М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DmitriyTF2
DmitriyTF2
21.01.2020 09:17 •  Алгебра

Sin2x+2cos^x-2=2cos2x, на промежутке от [2; 5]

👇
Ответ:
Мисаки11111
Мисаки11111
21.01.2020
sin2x+2cos^2x-2=2cos2x\; ,\; \; \; x\in [\, 2,5\, ]\\\\2sinx\cdot cosx-2(1-cos^2x)=2(cos^2x-sin^2x)\\\\2sinx\cdot cosx-2sin^2x-2cos^2x+2sin^2x=0\\\\2sinx\cdot cosx-2cos^2x=0\\\\2cosx\cdot (sinx-cosx)=0\\\\1)\quad cosx=0\; ,\; x=\frac{\pi}{2}+\pi n,\; n\in Z\\\\2)\quad sinx-cosx=0\, |:cosx\ne 0\\\\tgx-1=0\; ,\; \; \; tgx=1\\\\x=\frac{\pi}{4}+\pi k,\; k\in Z\\\\3)\quad x\in [\, 2,5\, ]\; ,\; 2rad\approx 114,5^\circ \; ;\; 5rad\approx 286,5^\circ \\\\x=\frac{\pi}{4}+\pi =\frac{5\pi}{4}=225^\circ

x=\frac{\pi}{2}+\pi =\frac{3\pi}{2}=270^\circ\\\\Otvet:\quad \frac{5\pi}{4}\; ;\; \frac{3\pi}{2}\; .
4,5(8 оценок)
Открыть все ответы
Ответ:
DeM12345
DeM12345
21.01.2020
Давайте решим эту задачу пошагово.

1. Для начала, давайте разберемся с первым выражением: √5x², где x > 0. Чтобы вынести множитель из под знака корня, мы должны разложить его на произведение двух корней: √5 * √x². Корень из x² равен x, поэтому мы можем переписать это выражение как √5 * x.

2. Теперь обратимся ко второму выражению: √8y², где y < 0. Аналогично первому шагу, мы разложим его на произведение √8 * √y². Корень из y² равен |y| (модуль y), поэтому мы можем переписать это выражение как √8 * |y|.

3. Теперь давайте рассмотрим вторую часть вопроса: внести множитель под знак корня. Мы должны разложить выражение на произведение двух корней: √5 * x, где x > 0, и √7 * |y|, где y < 0.

Итак, окончательный ответ будет иметь вид:

Если x > 0, то √5x² = √5 * x.
Если y < 0, то √8y² = √8 * |y|.
Если x > 0 и y < 0, то x√5 и y√7.

Надеюсь, это решение будет понятным для школьников. Если возникнут еще вопросы, пожалуйста, не стесняйтесь спрашивать!
4,4(9 оценок)
Ответ:
Maria3111
Maria3111
21.01.2020
Для доказательства того, что среди образовавшихся углов есть угол, величина которого больше 17, мы можем использовать метод противоположного доказательства. То есть, мы предполагаем, что все углы, образованные этими прямыми, имеют величину меньше или равную 17, и затем мы пытаемся найти противоречие.

Пусть угол BAC составляет наибольшую величину среди всех образовавшихся углов, и пусть его величина равна x, где x ≤ 17, так как мы предполагаем, что все углы имеют величину, меньшую или равную 17.

Также предположим, что угол BAC является наибольшим углом. Тогда существует только одна прямая, которая пересекает прямую AB в точке A, и только одна прямая, которая пересекает прямую AC в точке A (поскольку мы провели только 10 прямых).

Рассмотрим углы BAD и CAE. Поскольку аксиома о сумме углов в треугольнике гласит, что сумма углов треугольника равна 180 градусам, то сумма углов BAC, BAD и CAE должна быть равна 180 градусам.

Таким образом, мы можем записать уравнение:
x + y + z = 180,
где y и z - это углы BAD и CAE соответственно.

Но мы знаем, что x ≤ 17, так как мы предположили, что угол BAC является наибольшим углом и его величина не превышает 17.

Также мы предполагаем, что все углы, образованные этими прямыми, имеют величину меньше или равную 17. Поэтому y ≤ 17 и z ≤ 17.

Так как мы предполагаем, что x + y + z = 180, и x, y и z не превышают 17, то сумма этих углов не может быть больше 51 (17 + 17 + 17 = 51).

Но это противоречит тому факту, что сумма углов BAC, BAD и CAE должна быть равна 180 градусам.

Таким образом, наше предположение, что все углы образовавшиеся прямыми имеют величину меньше или равную 17, является неверным.

Следовательно, мы можем сделать вывод, что среди образовавшихся углов есть угол, величина которого больше 17.
4,7(88 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ