Решение
По теореме Виета имеем: x₁ + x₂ = 2n
x₁ * x₂ = 22n² + 8n
x₁² + x₂² = (x₁+ x₂)² – 2x₁*x₂ = (2n)² – 2*(22n² + 8n) =
= 4n² – 44n² – 16n = - 40n² – 16n
f(n) = - 40n² – 16n
f `(n) = - 80n - 16
- 80n – 16 = 0
80n = - 16
n= - 1/5
D = 4n² – 4*(22n² + 8n) = 4n² – 88n² – 32n = - 84n² – 32n
- 84n² – 32n > 0
- 4n(21n + 8) > 0
4n(21n + 8) < 0
4n(21n + 8) = 0
n₁ = 0
21n + 8 = 0
n₂ = - 8/21
+ - +
à
-8/21 0 x
- 1/5 ∈ [- 8/21; 0]
при значении параметра n = - 1/5 сумма квадратов корней
уравнения x² − 2nx + 22n² + 8n = 0 будет наибольшей
ответ: n = - 1/5
Объяснение:
Координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)
Объяснение:
Решить графически систему уравнений:
x-y=3
3x-y=13
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
x-y=3 3x-y=13
-у=3-х -у=13-3х
у=х-3 у=3х-13
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -16 -13 -10
Согласно графика, координаты точки пересечения прямых (5; 2)
Решение системы уравнений (5; 2)
х : 6 + (х+4) : 5 = 3
5х : 30 + 6 *(х+4) : 30 = 3
(5х + 6х + 24) : 30 = 3
11х + 24 = 3 * 30
11х + 24 = 90
11х = 66
х = 66 : 11
х = 6 км - первая часть маршрута
6+4 = 10 км - вторая часть маршрута
6+10 = 16 км - весь путь
ответ: 16 км турист.