У нас есть десятичная дробь: 0,232323...=0,(23) Поступим таким образом: 1) Подсчитаем, сколько цифр в периоде (в скобках). Их - 2. 2) Подсчитаем, сколько цифр до периода, но после запятой. Их 0. 3) Представим число, как целое. Получится 23. 4) Т.к. во 2 пункте указано, что чисел нет, то число будет равно 0.
Теперь, чтобы перевести в обыкновенную дробь, надо из нашего целого числа вычесть число, стоящие до периода. В знаменателе записать 9 столько раз, сколько цифр в периоде, и поставить столько 0, сколько цифр до периода, но после запятой. Получим следующее:
1) на формулы сокращенного умножения 2) на формулы сокращенного умножения и вынесение общего множителя 3) на формулы сокращенного умножения 4) решение квадратных уравнений и вынесение общего множжителя 5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.
5/9-2/3=-1/9
5/9+2/3=11/9
-5/9-2/3=-11/9
-5/9+2/3=1/9