1. Пусть числитель дроби - (х), тогда знаменатель дроби на 3 больше - (х+3) 2. Увеличиваем числительно на 1, а знаменатель на 5: Числитель - (х)+1 = х+1 Знаменатель - (х+3)+5 = х+8 3. Полученная дробь меньше первой на 1/6. Значит, (х)/(х+3)=(х+1)/(х+8)-1/6 (х)/(х+3)-(х+1)/(х+8)+1/6=0 Приведём дроби к общему знаменателю 6*(х+3)*(х+8):
( (х)*6*(х+8) ) - ( (х+1)*6*(х+3) ) + ( (х+3)*(х+8) ) разделить на 6*(х+3)*(х+8) равно нулю
6х^2+48х-6х^2-24х-18+х^2+11х+24 разделить на 6*(х+3)*(х+8) равно нулю
(х^2+35х+6)/(6*(х+3)*(х+8))= 0
Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю:
х^2+35х+6=0, при условии, что 6*(х+3)*(х+8) не равно нулю
а.1) 8,25*0,1=0,825
а.2) 0,825-0,025=0,8
2 действие: б) (2,21+4,79)=7
3 действие: в) (8,25*0,1-0,025)*(2,21+4,79):0,1=56
в.1) 0,8*7=5,6
в.2)5,6:0,1=56
ответ: (8,25*0,1-0,025)*(2,21+4,79):0,1=56