А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
2) Подставляем
sin 5x*(sin 5x*cos 2pi/9 + cos 5x*sin 2pi/9) = 1/2*cos 2pi/9
sin 5x*cos 5x*sin 2pi/9 = 1/2*cos 2pi/9 - sin^2 5x*cos 2pi/9
Умножаем все на 2 и делим на cos 2pi/9
2sin 5x*cos 5x*tg 2pi/9 = 1 - 2sin^2 5x
sin 10x*tg 2pi/9 = cos 10x
tg 10x*tg 2pi/9 = 1
tg 10x = ctg 2pi/9 = ctg 4pi/18 = tg (pi/2 - 4pi/18) = tg 5pi/18
x = 1/10*(5pi/18 + pi*k) = pi/36 + pi/10*k