М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nikitastepanov21
nikitastepanov21
26.06.2020 06:03 •  Алгебра

Постройте график функции скобочка вместо слова *если* заранее ) \left \{y= {{-2x,(x=\leq 2} \atop{-4,(x=\geq2}} \right.[/tex]

👇
Открыть все ответы
Ответ:
steep6
steep6
26.06.2020
Многое в поставленной вами задачи зависит от того Какие значения может 
принимать Х изменяясь в своей области определения . Кроме того важно 
сразу отметить что если вы ищете аналитическую закономерность (виде 
некоторой формулы) то её может и не быть. 

Если множество значений Х дискретно то можно использовать 
любой из стандартных методов интерполяции : линейную, дробно- 
линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д 

Приведу пример нахождения интерполяционного многочлена Тейлора 
по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; 
многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- 
подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 
а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: 
P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; 
P(X2)=1+A1*1+A2*1*1=2 
P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк 
Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 
Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости 
между X и Y. Естественно этот результат не единственен. 
Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов» 
4,8(24 оценок)
Ответ:
lis316721
lis316721
26.06.2020
Что такое подобные одночлены?

Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2;      31 и 45;      a2bx4 и 1,4a2bx4;      100y3и 100y3

Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.

Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0

Эти действия называются приведением подобных одночленов.

Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x

То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2

4,8(1 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ