1) Итак, t лежит во второй четверти. Из основного тригонометрического тождества sin^2a+cos^2a=1 => cos^2a=1-sin^2a => cosa=(+/-)корень из(1-sin^2a). Теперь к нашему примеру. Найдем косинус. Так как t лежит во второй четверти, где косинус отрицательный, перед корнем ставим знак минус: cost=-корень из(1-(8/17)^2)=-корень из(1-(64/289))=-корень из(225/289)=-15/17. Далее tgt=sint/cost=(8/17)/(-15/17)=-8/15 ctg=1/tgt=cost/sint=-15/8
2) ctgt=1/tgt=-35/12 t лежит во второй и третьей четверти. Имеем формулу: 1+tg^2a=1/cos^2a => cos^2a=1/(1+tg^2a). Переходим к нашему примеру. cos^2t=1/(1+tg^2t)=1/(1+(-12/35)^2)=1/(1+144/1225)=1/(1369/1225)=1225/1369 Т.е., получили, что cos^2t=1225/1369. Тогда cost=-корень из (1225/1369)=-35/37 Перед корнем ставится знак минуса, потому что косинус во второй и третьей четверти отрецательный. Найдем синус из формулы tgt=sint/cost -12/35=sint/(-35/37) => sint=(-12/35)*(-35/37)=12/37
1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
1) Найдем точки экстремумов функции:
Но 4 не входит в промежуток [-3; 3], поэтому эту точку мы исключаем из рассмотрения.
Теперь, подставляя -3, 0 и 3 в исходную функцию, найдем значения функции для каждого из аргумента и найдем max.
f(0) - максимально, т.е. значение 0 максимально на отрезке [-3; 3]
ответ: 0