f(x)=x²-3x+2
Найдём нули функции:
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-2)(х-1)=0
х-2=0 => x=2
x-1=0 => x=1
Точки пересечения параболы с осью Х: (1;0) и (2;0)
Найдем вершину параболы по формуле x=-b/2a: a=1; b=-3: x=3/2*1=1.5
y=1.5²-3*1.5+2
y=-0.25
Координаты вершины параболы: (1.5;-0.25)
Все. Параболу можно построить по этим 3-м точкам: (1;0), (1.5;-0.25) и (2;0).
Чтобы график был точнее, можно найти еще несколько точек, подставляя различные значения х в уравнение параболы.
Таблица и график во вложении
|x+1|=x+1, при х+1≥0, т.е при x≥ - 1.
Поэтому строим график
g(x)=x²-3(x+1)+x на [-1;+∞),
упрощаем:
g(x)=x²-2x-3 на [-1;+∞).
Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки
(0;-3) (1;-4)(2;-3)(3;0) (4;5)...
Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график
g(x)=x²-3(-x-1)+x на (-∞;-1),
упрощаем:
g(x)=x²+4x+3 на (-∞;-1).
Строим часть параболы, ветви вверх,
Вершина в точке (-2;-1)
Парабола проходит через точки
(-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)