1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении. значит экстремумы в точках -(1;-1) а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой . 2) значит экстремумы в точках (-2;16),(2;16) А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2 убывает на промежутках [-2;2] возрастает (-∞;2]∪[2;+∞) 3)сначала найдём производные 1 производная : x∉R видим что первой производной нет ,ищем вторую функция выпукла: (-∞;0) f"(x)<0 функция вогнута (0;+∞) f"(x)>0
√4.5 * √72 = √4.5 *√ 9*8 = √4.5 * 3 * √8 = √4.5 * 3 * √4*2 = √4.5 * 3 * 2 * √2 = √4.5 * 6 * √2 = √4.5*√2 * 6 = √9 * 6 = 3*6 = 18 т.к выглядит по татарски , напишу письменно корень их 4,5 умножим на корень из 72 , разложим 72 на множители- 9 и 8( что бы корень исчез) , корень из 9 - это 3 , следовательно получаем: корень из √4.5 * 3 * √8 . 8 тоже можно разложить на множители - это 4*2 а корень из 4 - это 2, получаем корень из 4,5, умноженное на 3, умноженное на на 2 и ещё раз умноженное на корень из двух 3 и 2 перемножаем , получаем 6. и теперь у нас остаётся корень из 4,5 и корень из двух их мы тоже перемножим , получим корень из 9 а корень из 9 - это 3 получается что 6*3=18 ОТВЕТ : 18 спрашивай, если что не понятно
2^x+1/2^x≥2√2
2^x+1/2^x-2√2≥0
2^2x-2√2*2^x+1≥0
2^x=a
a²-2√2a+1≥0
D=8-4=4
a1=(2√2-2)/2=√2-1
a2=(2√2+2)/2=√2+1
a≤√2-1 U a≥√2+1⇒2^x≤√2-1⇒x≤log(2)(√2-1) U 2^x≥x≥log(2)(√2+1) не удов усл
x∈(-∞;√2-1]
x≥0
2^x+2^x≥2√2
2*2^x≥2√2⇒2^x≥√2⇒x≥0,5
x∈[0,5;∞)
ответ x∈(-∞;√2-1] U [0,5;∞)