1) Во-первых, есть такое понятие как скобки. Во-вторых, если 2^(x-2)=y, то y-2/y=1, отсюда y=2, y=-1, второй не подходит, 2^(x-2)=2, x=3. 2) Соответственно, здесь не понятно, это (3/4^x) -1, или 3/4^(x-1)? Второй вариант легче, получаем после сокращения 2=3*4^(x+1)=3*2^(2x+2), 2^(2x+1)=1/3, откуда x=-(log_2(3)+1)/2. Первый вариант, заменяем 4^x на y, 2=(3/y - 1)*y^2, y^2-3y+2=0, y=1, y=2; т.е. 2^(2x)=1, 2^(2x)=2; x=0, x=1/2. 3) Опять-таки, это (0,3)^(x-3) или 13*3^x/10^x - 3? Пусть второе, тогда если 3^x=y, 10^x=z, то 10y^2=13yz-3z^2; (10y-3z)(y-z)=0; 0.3^(x-1)=1, 0.3^x=1; откуда x=1 или x=0.
1. Начнем решать задачу "от противного". Если во второй день работы израсходовали от того, что осталось после первого деня, то после второго дня работы осталась от того, что осталось после первого дня работы. По условию, после двух дней работы осталось 2 банки, соответственно =2, из чего следует, что во второй день израсходовали 4 банки с краской (так как 2×2=4). По условию сказано, что в первый день израсходовали половину всех банок +1. Значит, 4 банки - это половина всех банок -1. Соответственно, половина - это 4+1=5. В первый день израсходовали 5+1=6 (банок с краской), во второй день израсходовали 4 (банки с краской), а осталось на третий день еще 2 (банки с краской). Суммируем все количество банок: 6+4+2=12. ответ: всего было куплено 12 банок с краской.
1) sinx = -1/2; x = (-1)^(n+1)* arcsin(|-1/2|) + pi*n; x = (-1)^(n+1)* pi/6) + pi*n; n ∈ Z
n = 0; x = -pi/6 ∉[0;3p] n = 1; x = pi/6 + pi = 7pi/6 ∈[0;3p] n = 2; x = -pi/6 + 2pi = 11pi/6 ∈[0;3p] n = 3; x = pi/6 + 3pi ∉[0;3p] ответ: x = 7pi/6 ∪ x = 11pi/6
2) sinx = 1/2; x = (-1)^(n)* arcsin1/2) + pi*n; x = (-1)^(n)* pi/6)+ pi*n; n ∈ Z
n = -1; x = -pi/6 - pi ∉ [-p/2;3p/2] n = 0; x = pi/6 ∈[-p/2;3p/2] n = 1; x = -pi/6 + pi = 5pi/6 ∈[-p/2;3p/2] n = 2; x = pi/6 + 2pi ∉[-p/2;3p/2] ответ: x = pi/6 ∪ x = 5pi/6
3) sinx = -√2/2; x = (-1)^(n+1)* arcsin(|-√2/2|) + pi*n; x = (-1)^(n+1)* pi/4) + pi*n; n ∈ Z
n = -4; x = -pi/4 - 4pi ∉[-3p;0] n = -3; x = pi/4 - 3pi = -11pi/4 ∈[-3p;0] n = -2; x = -pi/4 -2pi = -9pi/4 ∈[-3p;0] n = -1; x = pi/4 - pi = - 3pi/4 ∈[-3p;0] n = 0; x = -pi/4 ∈[-3p;0] n = 1; x = pi/4 + pi ∉[-3p;0] ответ: x = -11pi/4 ∪ x = -9pi/4 ∪ x = pi/4 - pi ∪ x = -pi/4
4) sinx = √2/2; x = (-1)^(n)* arcsin(√2/2) + pi*n; x = (-1)^(n)* pi/4)+ pi*n; n ∈ Z
n = -2; x = pi/4 - 2pi = -7pi/4 ∉[-3p/2;5p/2] n = -1; x = -pi/4 - pi = - 5pi/4 ∈[-3p/2;5p/2] n = 0; x = pi/4 ∈[-3p/2;5p/2] n = 1; x = -pi/4 + pi = 3pi/4 ∈[-3p/2;5p/2] n = 2; x = pi/4 + 2pi = 9pi/4 ∈[-3p/2;5p/2] n = 3; x = -pi/4 + 3pi ∉[-3p/2;5p/2] ответ: x = -5pi/4 ∪ x = pi/4 ∪ x = 3pi/4 ∪ x = 9pi/4
5) sinx = -√3/2; x = (-1)^(n+1)* arcsin(|-√3/2|) + pi*n; x = (-1)^(n+1)* pi/3) + pi*n; n ∈ Z
n = -2; x = -pi/3 - 2pi ∉[-2p;2p] n = -1; x = pi/3 - pi = -2pi/3; n = 0; x = -pi/3 ∈[-2p;2p] n = 1; x = pi/3 + pi = 4pi/3 ∈[-2p;2p] n = 2; x = -pi/3 + 2pi = 5pi/3 ∈[-2p;2p] n = 3; x = pi/3 + 3pi ∉[-2p;2p] ответ: x = -2pi/3 ∪ x = -pi/3 ∪ x =4pi/3 ∪ x = 5pi/3
2^*x-2)-2/(2^(x-2))=1
2^(x-2)=a
a-2/a-1=0
a²-a-2=0
a1+a2=1 U a1*a2=-2
a1=-1⇒2^(x-2)=-1 нет решения
a2=2⇒2^(x-2)=2⇒x-2=1⇒x=3
2
2=3*4^(1-x)*4^2x
2=12*4^x
4^x=1/6
x=log(4)1/6=-log(4)6