Количество игр: 2
:
Выигрыш (В) - 3 очка
Ничья (Н) - 1 очко
Проигрыш (П) - 0 очков
P(Н) = 0,1
Так как общая вероятность равна 1 или 100%, то:
P(В+П) = 1 - 0,1 = 0,9
По условию Р(В) = Р(П), тогда:
Р(В) = P(В+П) /2 = 0,9 / 2 = 0, 45
Р(П) = P(В+П) /2 = 0,9 / 2 = 0, 45
Команде не удасться выйти в следующий круг соревнований при следующих событиях:
1 игра - проигрыш, 2 игра - выигрыш1 игра - выигрыш, 2 игра - проигрыш1 игра - проигрыш, 2 игра - проигрыш1 игра - ничья, 2 игра - ничья1 игра - ничья, 2 игра - проигрыш1 игра - проигрыш, 2 игра - ничьяР(1) = Р(П) * Р(В) = 0,45 * 0,45 = 0,2025
Р(2) = Р(В) * Р(П) = 0,45 * 0,45 = 0,2025
Р(3) = Р(П) * Р(П) = 0,45 * 0,45 = 0,2025
Р(4) = Р(Н) * Р(Н) = 0,1 * 0,1 = 0,01
Р(5) = Р(Н) * Р(П) = 0,1 * 0,45 = 0,045
Р(6) = Р(П) * Р(Н) = 0,45 * 0,1 = 0,045
Вероятность того, что команде не удастся выйти в следующий круг соревнований:
Р = Р(1) + Р(2) + Р(3) + Р(4) + Р(5) + Р(6) = 0,2025 + 0,2025 + 0,2025 + 0,01 + 0,045 + 0,045 = 0,7075 = 0,71
x=−7x+40x−10
Домножим обе части ур-ния на знаменатели:
-10 + x
получим:
x(x−10)=1x−10(−7x+40)(x−10)
x(x−10)=−7x+40
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
x(x−10)=−7x+40
в
x(x−10)+7x−40=0Раскроем выражение в уравнении
x(x−10)+7x−40=0Получаем квадратное уравнение
x2−3x−40=0
Это уравнение вида
a*x^2 + b*x + c.
Квадратное уравнение можно решить
с дискриминанта.
Корни квадратного уравнения:
x1=D‾‾√−b2a
x2=−D‾‾√−b2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
a=1
b=−3
c=−40
, то
D = b^2 - 4 * a * c =
(-3)^2 - 4 * (1) * (-40) = 169
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
x1=8
x2=−5
ответ: x=-5