a) функция - композиция дробно-рациональной
t(x)=1/(x-1) и показательной y=7^(t(x))
t(x)=1/(x-1) - непрерывна при х∈(-∞;1) U(1;+∞)
y=7^(t(x)) - непрерывна при t∈(-∞;+∞)
Значит и данная функция непрерывна при x∈(-∞;1) U(1;+∞)
Проверяем непрерывность в точке x=1
Находим предел слева: lim (x→1-0)7^(1/(x-1))=0
x→1-0 тогда (1/(x-1))→-∞
7^(-∞)→0
Находим предел справа:lim (x→1+0)7^(1/(x-1))=+∞
x→1+0 тогда (1/(x-1))→+∞
7^(+∞)→+∞
x=1- точка разрыва второго рода ( один из односторонних пределов - бесконечный)
б) y=x² непрерывна на (-∞;+∞), а потому непрерывна и на [0;1]
y=2x+3 непрерывна на (-∞;+∞), а потому непрерывна и на (1;2]
Значит, надо исследовать непрерывность в точке х=1
Находим предел слева: lim (x→1-0)x²=(1-0)²=1
Находим предел справа:lim (x→1+0)7=2·1+3=5
Предел слева не равен пределу справа.
Значит предел функции в точке не существует и потому
x=1- точка разрыва первого рода ( пределы конечны, но не равны, есть конечный скачок)
a) функция - композиция дробно-рациональной
t(x)=1/(x-1) и показательной y=7^(t(x))
t(x)=1/(x-1) - непрерывна при х∈(-∞;1) U(1;+∞)
y=7^(t(x)) - непрерывна при t∈(-∞;+∞)
Значит и данная функция непрерывна при x∈(-∞;1) U(1;+∞)
Проверяем непрерывность в точке x=1
Находим предел слева: lim (x→1-0)7^(1/(x-1))=0
x→1-0 тогда (1/(x-1))→-∞
7^(-∞)→0
Находим предел справа:lim (x→1+0)7^(1/(x-1))=+∞
x→1+0 тогда (1/(x-1))→+∞
7^(+∞)→+∞
x=1- точка разрыва второго рода ( один из односторонних пределов - бесконечный)
б) y=x² непрерывна на (-∞;+∞), а потому непрерывна и на [0;1]
y=2x+3 непрерывна на (-∞;+∞), а потому непрерывна и на (1;2]
Значит, надо исследовать непрерывность в точке х=1
Находим предел слева: lim (x→1-0)x²=(1-0)²=1
Находим предел справа:lim (x→1+0)7=2·1+3=5
Предел слева не равен пределу справа.
Значит предел функции в точке не существует и потому
x=1- точка разрыва первого рода ( пределы конечны, но не равны, есть конечный скачок)
t(t + 2) = 3
t^2 + 2t - 3 = 0
D = 4 + 12 = 16 = 4^2
t₁= ( - 2 + 4)/2 = 1;
t₂ = ( - 2 - 4)/2 = - 3;
x^2 + 2x = 1
x^2 + 2x - 1 = 0
D = 4 + 4 = 8
x₁= ( - 2 + 2√2)/2 = - 1 + √2;
x₂ = ( - 2 - 2√2)/2 = - 1 - √2;
x^2 + 2x = - 3
x^2 + 2x + 3 = 0
D = 4 - 4*3 < 0
∅ нет реш
ответ
- 1 - √2;
- 1 + √2