1) По формулам двойного аргумента sin 2a = 2sin a*cos a Поэтому sin 2x*cos 2x - sin x*cos x = 1/2*sin 4x - 1/2*sin 2x = 0 sin 4x - sin 2x = 0 По формуле разности синусов sin a - sin b = 2sin((a-b)/2)*cos((a+b)/2) Поэтому sin 4x - sin 2x = 2sin((4x-2x)/2)*cos((4x+2x)/2) = 2sin x*cos 3x = 0 Произведение равно 0, когда один из множителей равен 0 sin x = 0; x1 = pi*k cos 3x = 0; 3x = pi/2 + pi*n; x2 = pi/6 + pi*n/3 2) Есть такая формула sin a + cos a = √2*(sin a*1/√2 + cos a*1/√2) = = √2*(sin a*cos pi/4 + cos a*sin pi/4) = √2*sin (a+pi/4) Поэтому sin (x/2) + cos (x/2) = √2*sin (x/2 + pi/4) = 1 sin (x/2 + pi/4) = 1/√2 x/2 + pi/4 = pi/4 + 2pi*k; x/2 = 2pi*k; x1 = 4pi*k x/2 + pi/4 = 3pi/4 + 2pi*n; x/2 = 2pi/4 + 2pi*n = pi/2 + 2pi*n; x2 = pi + 4pi*n
Из пункта А выехал велосипедист а через 1 час 30 минут вслед за ним из пункта А по той же дороге выехал велосипедист скорость которого на 6 км/ч больше скорости первого, и через 4 часа 30 минут после своего выезда обогнал первого на 3 км. Найдите скорость первого велосипедиста
Решение: Пусть скорость первого велосипедиста x км/ч, тогда скорость второго х+6 (по условию задачи на 6 км/ч больше). Первый велосипедист был в пути 1 час 30 минут или 1,5 часа и еще 4 часа 30 минут или 4,5 часа. Всего первый велосипедист проехал (1,5+4,5)х км. Второй был в пути 4,5 часа и проехал 4,5(х+6) км. Составим уравнение. (1,5+4,5)х+3 = 4,5(х+6) 6х+3 = 4,5х+25 6х-4,5х = 25-3 1,5х = 22
Скорость первого велосипедиста равна 14 2/3≈14,7 км/ч