Если значения даны в градусах то просто все. Сначала используем формулы приведения: sin216°=sin(270°-54°)=-cos54°=-√(1-sin²54°) Найдем sin54°. Для этого можно использовать разные методы. Например такой: рассмотрим значение 4sin²54°. Преобразуем (значок градусов не пишу, но подразумеваю): Получаем квадратное уравнение относительно sin54°: 4sin²54°-2sin54°-1=0 D=20 sin54°=(√5+1)/4 (есть еще один отрицательный корень, но он нам не подходит, так как 0°<54°<90° , а значит sin54°>0) Отсюда
Ть опервый использование свойств арифметической прогрессии) Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным ответ: 114
второй на смекалку) (так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х= (-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х= 0+0+0+....+0+0+112+113+114+..+х =112+113+..+х т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0, и фактически наша сумма равна 112+113+...+х (*) так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы , найдем его очень быстро 112=112 112+113=225 - меньше 112+113+114=339 -- совпало значит искомое число х равно 114 ответ: 114
sin216°=sin(270°-54°)=-cos54°=-√(1-sin²54°)
Найдем sin54°. Для этого можно использовать разные методы. Например такой: рассмотрим значение 4sin²54°. Преобразуем (значок градусов не пишу, но подразумеваю):
Получаем квадратное уравнение относительно sin54°:
4sin²54°-2sin54°-1=0
D=20
sin54°=(√5+1)/4 (есть еще один отрицательный корень, но он нам не подходит, так как 0°<54°<90° , а значит sin54°>0)
Отсюда