1+sinx·√(2ctgx) ≤ 0
Подкоренное выражение не может быть отрицательным
ctg x ≥ 0 0.5π ≥ x > 0 это в 1-й четверти
1.5π ≥ x > π это в 3-й четверти
в 1-й четверти sinx > 0 и выражение 1+sinx·√(2ctgx)> 0
в 3-й четверти sinx < 0 и выражение 1+sinx·√(2ctgx)может стать меньше 0, если
sinx·√(2ctgx) ≤ -1
делим на отрицательный синус
√(2ctgx) ≥ -1/sinx
обе части положительны
возводим в квадрат
2ctgx ≥ 1/sin²x
2ctgx ≥ 1 + ctg²x
1 + ctg²x - 2ctgx ≤ 0
(1 - ctgx)² ≤ 0
Квадрат любого числа не может быть отрицательным, поэтому остаётся только
равенство нулю:
1 - ctgx = 0
ctgx = 1 (четверть 3-я!)
х = 5/4π
Решение единственное: при х = 5/4π выражение 1+sinx·√(2ctgx) = 0
ну, и, разумеется следует добавить 2πn, тогда решение такое:
х = 5/4π +2πn
в прямоугольном треугольнике АВД угол А = 90 - 40 = 50 гр в прямоугольном треугольнике ВДС угол С = 90 - 10 = 80гр тогда получаем, что в треугольнике АВС углы равны 50, 50 и 80 градусов.так как в тр-ке два угла равны, то он равнобедренный АВ - основание высоты тр-ка пересекаются в точке О, рассмотрим тр-ик СДО он прямоугольный, т.к ВД высота по условию. угол С = 40гр (80 : 2 - высота, проведенная к основанию является биссектрисой) угол ВОС это внешний угол тр-ка СДО. внешний угол треугольника равен сумме углов не смежных с ним, т.е Угол ВСО = угол С + угол Д = 40 + 90 = 130гр
Тогда уравнение принимает вид:
49t²-14t=-1
49t²-14t+1=0
(7t-1)²=0
t=1/7=7^(-1)
Выполним обратную замену:
7^(-1)=x^(-1)
x=7
ответ: x=7.