М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
diko2009
diko2009
01.02.2022 00:16 •  Алгебра

Разложение многочленов на множители. решите уравнение: x³ + 5x² + 10x +25 =0

👇
Ответ:
Djzhdujd
Djzhdujd
01.02.2022
Решаем с Формулы Кардано
 Заменим x=y- \frac{5}{3}, получаем
(y- \frac{5}{3} )^3+5(y- \frac{5}{3} )^2+10(y- \frac{5}{3} )+25=0\\ y^3-5y^2+ \frac{25}{3} y- \frac{125}{27} +5y^2- \frac{50}{3}y+ \frac{125}{9} +10y- \frac{50}{3}y+25=0\\ y^3+ \frac{5}{3}y+ \frac{475}{27}=0
Сделаем подстановку Виета
 y=t- \frac{5}{9t}, тогда получаем
t^3- \frac{5}{3} t+ \frac{25}{27t} - \frac{125}{729t^3} + \frac{5}{3} t- \frac{25}{27t} + \frac{475}{27} =0\\ \\ t^3- \frac{125}{729t^3}+\frac{475}{27}=0
t^6+\frac{475}{27}t^3-\frac{125}{729}=0
Пусть \sqrt[3]{a} =t, тогда
a^2+\frac{475a}{27}-\frac{125}{729}=0
Дальше квадратное уравнение

D=b^2-4ac=\frac{8375}{27}

a_1_,_2= \dfrac{-\frac{475}{27}\pm\frac{5 \sqrt{335} }{3 \sqrt{3} }}{2}

Возвращаясь к заменам, получим ответ

x=\frac{-10+ \sqrt[3]{-1900+60 \sqrt{1005} }+ \sqrt[3]{-1900-60 \sqrt{1005} } }{6}
4,4(69 оценок)
Открыть все ответы
Ответ:

\sin(2x ) < \frac{1}{2}

2x < arcsin( \frac{1}{2} ) \\ 2x < \frac{\pi}{6}

разделим обе стороны на 2 чтоб упростить

x < \frac{\pi}{12}

Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из

π

, чтобы найти решение во втором квадранте.

2x = \pi - \frac{\pi}{6}

x = \frac{5\pi}{12}

Период функции

sin(2х)

равен

π

, то есть значения будут повторяться через каждые

π

радиан в обоих направлениях

x = \frac{\pi}{12} + \pi(n). \frac{5\pi}{12} + \pi(n)

для всех целых n

Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.

1.

\frac{\pi}{12} < x < \frac{5\pi}{12}

1 это ложно

2.

\frac{5\pi}{12} < x < \frac{13\pi}{12}

2 это истинно

3.

\frac{5\pi}{12} < x < \frac{17\pi}{12}

3 это ложно.

Итак

решение включает все истинные интервалы:

\frac{5\pi}{12} + \pi(n) < x < \frac{13\pi}{12}

для всех целых n

4,8(40 оценок)
Ответ:
Cказочник
Cказочник
01.02.2022

5.

y=-x^2-2x+3,

a=-1<0 - ветви параболы вниз;

x_0=-b/(2a)=-(-2)/(2*(-1))=-1,

y_0=-(-1)^2-2*(-1)+3=4,

(-1;4) - вершина параболы;

x=0, y=3,

(0;3) - пересечение с Оу,

y=0, -x^2-2x+3=0,

x^2+2x-3=0,

по теореме Виета x_1=-3, x_2=1,

(-3;0), (1;0) - пересечения с Оx;

1) E_y=(-∞;4);

2) x∈(-1;+∞);

 

6.

(х^2+2х+1)(х^2-6х-16)<0,

(х^2+2х+1)(х^2-6х-16)=0,

х^2+2х+1=0, (x+1)^2=0, x+1=0, x=-1;

х^2-6х-16=0, по теореме Виета x_1=-2, x_2=8; х^2-6х-16=(x+2)(x-8);

(x+1)^2(x+2)(x-8)<0,

(x+1)^2≥0, x∈R,

(x+2)(x-8)<0,

-2<x<8,

x∈(-2;8);

 

7.

x^2-6bx+3b=0,

D<0,

D/4=k^2-ac=(-3b)^2-3b=3b^2-3b=3b(b-1),

3b(b-1)<0,

3b(b-1)=0,

b_1=0, b_2=1,

0<b<1,

b∈(0;1);

 

8.

ΔABC, уг.C=90°, CE - высота, AE=16см, BE=9см;

AB=AE+BE (по свойству сложения отрезков),

AB=16+9=25см;

AC^2=AB*AE (катет есть среднее геометрическое гипотенузы и смежного сегмента),

AC^2=25*16=400, AC=20см,

BC^2=AB*BE=25*9=225, BC=15см,

P=AB+AC+BC=25+20+15=60см.


Решить ,буду рад решению любого .побудуйте графік функції y=3-2x-x2. використовуючи графік, знайдіть
4,4(18 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ