Ну знаменатель не должен быть равен нулю. Всё. В ноль он обращается при у = -3, значит это значение недопустимо.
ответ: у ∈ ℝ \ {-3}
Ну а если углубиться в тему, то тут правила такие: 1) знаменатель не должен равняться нулю 2) при наличии тангенса косинус не должен равняться нулю, при наличии котангенса синус не должен равняться нулю 3) подкоренное выражение должно быть больше или равно нуля 4) подлогарифмическое выражение должно быть больше нуля, основание логарифма должно быть больше нуля и не равно единице
1. Начнем решать задачу "от противного". Если во второй день работы израсходовали от того, что осталось после первого деня, то после второго дня работы осталась от того, что осталось после первого дня работы. По условию, после двух дней работы осталось 2 банки, соответственно =2, из чего следует, что во второй день израсходовали 4 банки с краской (так как 2×2=4). По условию сказано, что в первый день израсходовали половину всех банок +1. Значит, 4 банки - это половина всех банок -1. Соответственно, половина - это 4+1=5. В первый день израсходовали 5+1=6 (банок с краской), во второй день израсходовали 4 (банки с краской), а осталось на третий день еще 2 (банки с краской). Суммируем все количество банок: 6+4+2=12. ответ: всего было куплено 12 банок с краской.
1) sinx = -1/2; x = (-1)^(n+1)* arcsin(|-1/2|) + pi*n; x = (-1)^(n+1)* pi/6) + pi*n; n ∈ Z
n = 0; x = -pi/6 ∉[0;3p] n = 1; x = pi/6 + pi = 7pi/6 ∈[0;3p] n = 2; x = -pi/6 + 2pi = 11pi/6 ∈[0;3p] n = 3; x = pi/6 + 3pi ∉[0;3p] ответ: x = 7pi/6 ∪ x = 11pi/6
2) sinx = 1/2; x = (-1)^(n)* arcsin1/2) + pi*n; x = (-1)^(n)* pi/6)+ pi*n; n ∈ Z
n = -1; x = -pi/6 - pi ∉ [-p/2;3p/2] n = 0; x = pi/6 ∈[-p/2;3p/2] n = 1; x = -pi/6 + pi = 5pi/6 ∈[-p/2;3p/2] n = 2; x = pi/6 + 2pi ∉[-p/2;3p/2] ответ: x = pi/6 ∪ x = 5pi/6
3) sinx = -√2/2; x = (-1)^(n+1)* arcsin(|-√2/2|) + pi*n; x = (-1)^(n+1)* pi/4) + pi*n; n ∈ Z
n = -4; x = -pi/4 - 4pi ∉[-3p;0] n = -3; x = pi/4 - 3pi = -11pi/4 ∈[-3p;0] n = -2; x = -pi/4 -2pi = -9pi/4 ∈[-3p;0] n = -1; x = pi/4 - pi = - 3pi/4 ∈[-3p;0] n = 0; x = -pi/4 ∈[-3p;0] n = 1; x = pi/4 + pi ∉[-3p;0] ответ: x = -11pi/4 ∪ x = -9pi/4 ∪ x = pi/4 - pi ∪ x = -pi/4
4) sinx = √2/2; x = (-1)^(n)* arcsin(√2/2) + pi*n; x = (-1)^(n)* pi/4)+ pi*n; n ∈ Z
n = -2; x = pi/4 - 2pi = -7pi/4 ∉[-3p/2;5p/2] n = -1; x = -pi/4 - pi = - 5pi/4 ∈[-3p/2;5p/2] n = 0; x = pi/4 ∈[-3p/2;5p/2] n = 1; x = -pi/4 + pi = 3pi/4 ∈[-3p/2;5p/2] n = 2; x = pi/4 + 2pi = 9pi/4 ∈[-3p/2;5p/2] n = 3; x = -pi/4 + 3pi ∉[-3p/2;5p/2] ответ: x = -5pi/4 ∪ x = pi/4 ∪ x = 3pi/4 ∪ x = 9pi/4
5) sinx = -√3/2; x = (-1)^(n+1)* arcsin(|-√3/2|) + pi*n; x = (-1)^(n+1)* pi/3) + pi*n; n ∈ Z
n = -2; x = -pi/3 - 2pi ∉[-2p;2p] n = -1; x = pi/3 - pi = -2pi/3; n = 0; x = -pi/3 ∈[-2p;2p] n = 1; x = pi/3 + pi = 4pi/3 ∈[-2p;2p] n = 2; x = -pi/3 + 2pi = 5pi/3 ∈[-2p;2p] n = 3; x = pi/3 + 3pi ∉[-2p;2p] ответ: x = -2pi/3 ∪ x = -pi/3 ∪ x =4pi/3 ∪ x = 5pi/3
В ноль он обращается при у = -3, значит это значение недопустимо.
ответ: у ∈ ℝ \ {-3}
Ну а если углубиться в тему, то тут правила такие:
1) знаменатель не должен равняться нулю
2) при наличии тангенса косинус не должен равняться нулю, при наличии котангенса синус не должен равняться нулю
3) подкоренное выражение должно быть больше или равно нуля
4) подлогарифмическое выражение должно быть больше нуля, основание логарифма должно быть больше нуля и не равно единице