С=0 , т к если число делится на 30, то оно делится на 10, Чтобы число делилось на 3 , сумма его цифр должна делиться на 3, Т е для В подходит 2, 5 и 8, это 420; 450 и 480-все они делятся на 30.
Для справки) Сумма корней приведенного квадратного трехчлена x2 + px + q = 0 равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q, т. е. x1 + x2 = – p и x1 x2 = q в общем все решается исходя из теоремы Виета) 1) сумма = 9 произведение = 20 2) составим уравнение исходя из (x-x1)(x+x2), где x1 и x2 - корни (x-8)(x+1)=x^2+x-8x-8=x^2-7x-8 3)по теореме Виета , произведение - свободный член, т.е 72 один корень 9, а второй 72/9=8 4)сумма = 12 ну и найдем, что корни то есть 12/4 = -3(1 корень) второй корень - 3*3=-9 (проверкой определяем знак перед корнем, тут минус) откуда c = произведению и равен 27)
№1 х - количество купюр по 50 руб. (22- х) - количество купюр по 10 руб. Уравнение 50х + 10·(22-х) = 500 50х + 220 - 10х = 500 40х = 500-220 40х=280 х = 280 : 40 х = 7 купюр по 50 руб. 22- 7= 15 купюр по 10 руб ответ: 7 купюр по 50р.; 15 купюр по 10р. №2 У точки А(5; 0) берём х = 5; у = 0 и подставим в уравнение y = kx + b, получим первое уравнение 0 = 5k + b, иначе: 5k + b = 0 У точки В(-2;21) берём х = -2; у = 21 и подставим в уравнение y = kx + b, получим второе уравнение 21 = -2k + b, иначе: -2k + b = 21 А теперь решаем систему: {5k+b=0 {-2k+b=21 Из первого b = - 5k. Подставим его значение во второе уравнение {b = - 5k {-2k - 5k = 21 ║ ∨ {b = -5k {-7k=21 ║ ∨ {b = -5k {k=21 : (-7) ║ ∨ {b = -5k {k= - 3 ║ ∨ {b = -5 · (-3) => {b = 15 {k=- 3 => {k = -3 Подставим эти значения в уравнение у = kх + b и получим: у = -3х +15 - это и есть искомое уравнение. ответ: у = -3х+15.
Чтобы число делилось на 3 , сумма его цифр должна делиться на 3,
Т е для В подходит 2, 5 и 8, это 420; 450 и 480-все они делятся на 30.