ответ: х∈[-1;-√2/2]∪[√2/2;1]
Объяснение:
неравенство равносильно следующему
-3≤2⁴ˣ²⁻¹-5≤3,
5-3≤2⁴ˣ²⁻¹-5+5≤3+5,
2≤2⁴ˣ²⁻¹≤8
2≤2⁴ˣ²⁻¹≤2³
2¹≤2⁴ˣ²⁻¹≤2³, т.к. функция у=2ˣ возрастающая, то
4х²-1≥1⇒4х²-2≥0 (1)
4х²-1≤3⇒4х²-4≤0 (2)
Решим сначала (1) методом интервалов, х²=1/2;х=±√2/2
-√2/2√2/2
+ - +
х∈(-∞;-√2/2]∪[√2/2;+∞)
решим второе неравенство (2) методом интервалов.
4х²х=±1
-11
+ - +
х∈[1;1]
решением исходного неравенства будет пересечение ответов для (1) и (2), т.е. х∈[-1;-√2/2]∪[√2/2;1]
Из исходного равенства видно, что p>q, в противном случае равенство не выполнялось бы. Предположим, что p=q+k, где k - натуральное. Тогда 2q+k=(q+k-q)^3, отсюда 2q+k=k^3 или 2q=k^3-k=k(k^2-1). Тогда q=k(k^2-1)/2. Отсюда сразу видно, что q будет простым только при k=2, поскольку при k=1 получаем 0, а при k>2 будем получать составные числа, а по условию q простое. Итак, при k=2, q=2*(2^2-1)/2=3. Тогда p=q+k=3+2=5. Это единственное решение удовлетворяющее данному равенству.
ответ: p=5, q=3.