Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
Дана квадратичная функция h(t)=30t−5t2, графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы. Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h). Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше. x0=t0=(−b)2a=−302⋅−5=3 секунды.
Время, через которое мяч упадет на землю, равно 2⋅t0=2⋅3=6 секунд. y0=h0= 30⋅3−5⋅32=45 метров.
1. Мяч взлетит на высоту 45 метров. 2. Мяч упадет на землю через 6 секунд