||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
ОДЗ : х² - 5х - 23 ≥ 0 2х² - 10х - 32 ≥ 0 Решение системы двух неравенств не так просто, поэтому при нахождении корней достаточно сделать проверку. Подставить корни в систему неравенств или подставить корни в уравнение
Так как 2х²-10х-32=2(х²-5х-16) то применяем метод замены переменной
х²-5х-23=t ⇒ x²-5x=t+23 x²-5x-16=t+23-16=t+7
Уравнение примет вид √t + √2·(t+7)=5
или
√2·(t+7) = 5 - √t
Возводим обе части уравнения в квадрат При этом правая часть должна быть положительной или равной 0 ( (5 - √t)≥0 ⇒√ t ≤ 5 ⇒ t ≤ 25)
2·( t + 7) = 25 - 10 √t + t
или
10·√t = 25 + t - 2t - 14
10·√t = 11 - t
Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0 t ≤ 11 Получаем уравнение
100 t = 121 - 22 t + t², при этом t ≤ 11
t² - 122 t + 121 = 0
D=122²-4·121=14884 - 484 = 14400=120
t₁=(122-120)/2= 1 или t₂= (122+120)/2 = 121 не удовлетворяет условию ( t ≤ 11)
б) (2m-3n)²+(3m-2n)² = 4m²-12mn+9n²+9m²-12mn+4n² = 13m²-24mn+13n².
в) (x²y³+1)(x²y³-1)-x⁴y = x⁴y⁶-1-x⁴y.