Разложите многочлен на множители: (3x-2y)^3+(2y-z)^3-(3x-z)^3 варианты: а) -3(3x-z)(3x-2y)(2y-z) б) 3(3x-2y)(2y-z)(3x-z) в) разложить нельзя г) -6(3x-z)(3x-2y)(2y-z) если разложить нельзя, объясните почему
Пусть Х км/ч- скорость по течению, а У км/ч - скорость против течения 8/Х- время по течению 3/у - время против течения (Х-2) собственная скорость (У+2) собственная скорость 45 мин=45/60 ч =3/4 ч Составим систему уравнений:
{8/Х+3/у=3/4. ⇒ { 8/Х+3/у=3/4 {(Х-2)=(у+2). {Х=у+4 Подставим Х=у+4 в 1-е уравнение : Получим 8/(у+4)+3/у=3/4 Приведём к общему знаменателю, получим: 32у+12у+48=3у²+12у -3у²+32у+48=0 Умножим на (-1) 3у²-32-48=0 Д=√1600=40 У1=(32+40)/6=12 км/ч - скорость против течения У2=(32-40)/6=(-8/6) - не является корнем Х=у+4=12+4=16 км/ч - скорость по течению
v₁ = (-b+√D)/2a = (44+40):6 = 14 (км/ч) v₂ = (-b-√D)/2a = (44-40):6 = 2/3 (км/ч) - не удовлетворяет условию, так как скорость лодки не может быть меньше скорости течения. (чисто математически, если у лодки будет скорость 2/3 км/ч, то она тоже пройдет 8+3=11 км за 45 минут, только последние 3 км она будет двигаться по течению, несмотря на все свои попытки двигаться против..))) Смысла в таком движении точно никакого..))
ответ: A)
Объяснение:
Дано выражение :
(3x-2y)^3+(2y-z)^3-(3x-z)^3
Пусть:
3x-2y=a
2y-z=b
3x-z =c
Заметим что :
a+b = 3x-2y +2y-z = 3x-z = c
То есть получаем эквивалентную задачу:
Разложить на множители :
a^3+b^3-c^3
Если :
a+b = c
a^3+b^3-c^3= a^3+b^3 -(a+b)^3 = a^3+b^3 - (a^3+b^3 +3ab*(a+b) ) =
= -3ab*(a+b)= -3abc
Возвращаясь к заменам имеем :
(3x-2y)^3 +(2y-z)^3 -(3x-z)^3 = -3*(3x-2y)*(2y-z)*(3x-z) =
= -3*(3x-z)(3x-2y)(2y-z)