После первого снижения на 20% цена стала :
100 - 20 = 80%
80 : 100 = 0,8
После второго снижения на 10% цена стала :
100 - 10 = 90%
90 : 100 = 0,9
Известно , что после двух снижений цены , цена на стул равна 108 грн .
Узнаем какой была первоначальная цена стула :
х грн - первоначальная цена
( х • 0,8 ) грн - цена после первого понижения цены ;
х • 0,8 • 0,9 = 0,72 • х - цена после второго понижения цены ;
0,72 • х = 108
х = 108 / 0,72
х = 150 ( грн ) - первоначальная цена стула .
ответ : 150 грн первоначальная цена стула .
1) Выделяем полные квадраты:
для y: (y²+2*7y + 72) -1*72 = (y+7)²-49
Преобразуем исходное уравнение:
(y+7)² = 6x - 0
Получили уравнение параболы:
(y - y0)² = 2p(x - x0)
(y+7)² = 2*3(x - 0)
Ветви параболы направлены вправо, вершина расположена в точке (x0, y0), т.е. в точке (0;-7)
Параметр p = -3.
Координаты фокуса: F(-p/2; yo) = (-1,5; -7).
Уравнение директрисы: x = x0 - p/2
x = 0 - 3/2 = -3/2.
2) Выделяем полные квадраты:
для x: (x²-2*1x + 1) -1 = (x-1)²-1
для y: -4(y²+2*3y + 3²2) +4*3² = -4(y+3)²+36
В итоге получаем:
(x-1)²-4(y+3)² = -68
Разделим все выражение на -68
(-1/68)(x - 1)² + (1/17)(y + 3)² = 1.
Параметры кривой.
Данное уравнение определяет гиперболу с центром в точке:
C(1; -3)
и полуосями: a = 2√17, b =√17.
Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Определим параметр c: c² = a² + b² = 68 + 17 = 85
c = √85.
Тогда эксцентриситет будет равен: e = c/a = √85/2√17.
Асимптотами гиперболы будут прямые: y + 3 = (1/2)(x - 1) и
y + 3 = (-1/2)(x - 1).
Директрисами гиперболы будут прямые: +-е/а = +-(√68/√85).
-4(х+2)+3(х-1)-2=4(х-2)+9
-0,6х+3(х-0,4)+11=-2,5х+3(х+2)
4(х-0,5)=7(х+1)