Числа 4 и 5 - корни уравнения, тогда имеем
2·4² + b·4 + с = 0
и
2·5² + b·5 + c = 0
Решаем эту систему из двух уравнений на два неизвестных.
32 + 4b + c = 0,(*)
50 + 5b + c = 0,
Из последнего уравнения вычтем предпоследнее уравнение:
50 + 5b + c - (32 + 4b + c) = 0 - 0,
50 - 32 + 5b - 4b + c - c = 0,
18 + b = 0,
b = -18,
подставим найденное значние, например, в (*), имеем
32 + 4·(-18) + с = 0,
32 - 72 + с = 0,
-40 + c = 0,
c = 40.
Тогда исходное уравнение имеет вид
2·x² - 18·x + 40 = 0,
D = (-18)² - 4·2·40 = 324 - 320 = 4 < 5.
Итак, дискриминант меньше 5.
ответ. Неверно.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√3). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√3 = √а
(3√3)² = (√а)²
9*3 = а
а=27;
b) Если х∈[9; 25], то какие значения будет принимать данная функция?
у= √х
у=√9=3;
у=√25=5;
При х∈ [9; 25] у∈ [3; 5].
с) y∈ [14; 23]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
23 = √х
(23)² = (√х)²
х=529;
При х∈ [196; 529] y∈ [14; 23].
d) Найдите при каких х выполняется неравенство у ≤ 4.
√х <= 4
(√х)² <= (4)²
х <= 16;
Неравенство у ≤ 4 выполняется при х <= 16.