Объяснение:пусть х км/ч - скорость 1 автобуса, тогда (х-2) км/ч скорость второго автобуса.
36/х ч - был в пути первый автобус
36/(х-2) ч - был в пути второй автобус, т.к. первый прибыл в пункт назначения на 15 минут раньше (15 мин = 15/60 = 1/4 ч), то получаем:
36/(х-2) - 36/х = 1/4
4(36х - 36(х-2)) = х(х-2)
4(36х - 36х + 72) = х² - 2х
х² - 2х - 288 = 0
д = 4 + 1152 = 1156
х = (2 + 34)/2 = 18
18 км/ч - скорость первого автобуса
18 - 2 = 16 км/ч - скорость второго автобуса.
ответ. 18 км/ч и 16 км/ч.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 20; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
Орел выпадает ровно 20 раз (k = 20)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(20! * 2!) * (1/2)^20 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
2x + 7 - x = 8
x = 1
1 + y = 7
y=6
(1;6)
x = y-2
y-2 -2y = 4
-y = 6
y = -6
x+6 = -2
x = -8
(-8;-6)