Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y). Решение: 1. Воспользуемся формулами разность синусов и сумма косинусов: Заметим, что оба равенства содержат один и тот же член: . Выразим его из обоих равенств: В получившихся равенствах левые части равны, значит, равны и правые части: . Преобразуем данное равенство: Теперь используем формулы понижения степени синуса и косинуса: Преобразуем данное равенство: n²(1-cos(x-y))=m²(1+cos(x-y)); n²-n²cos(x-y)=m²+m²cos(x-y); m²cos(x-y)+n²cos(x-y)=n²-m²; cos(x-y)(m²+n²)=n²-m²; Используя основное тригонометрическое тождество, выразим sin(x-y): ответ:
Можно решить 3-мя 1). (2 1/16 - 1 1/14)·28 = 56 28/16 - 28 28/14 = 57 12/16 - 30 = 27 3/4: Умножаем каждое число выражения в скобках на 28, причем отдельно умножаем целые и дробные части чисел и проводим вычитание: Это удобно, т. к. вторая дробь при умножении становится целым числом. 2). ( 33/16 - 15/14)·28 = (33·28)/16 - (15·28)/14 = (33·7)/4 -(15·28)/14 = 231/4 - 30 = 57 3/4 - 30 = 27 3/4 Переводим смешанную дробь в неправильную, затем умножаем числитель каждой дроби на 28, затем переводим первое число в смешанную дробь и вычитаем. Тоже удобно, раз знаменатель второй дроби кратен множителю. 3) (2 1/16 - 1 1/14)·28 = [(33·7)/(16·7) - (15·8)/(14·8)]·28 =[(33·7 - 15·8)/(16·7)]·28 = [(231-120)/(16·7)] ·28 = [11/(16·7)]·28 = (111·28)/(16·7)= 111/4 = 27 3/4. Много возни с приведением к общему знаменателю
ax²+bx+c=a(x-x₁)(x-x₂), где х₁,х₂- корни квадратного трехчлена
1)4x²+7x-2=4(х-(-2))(х-(1/4))=(х+2)(4х-1)
D=7²-4·4·(-2)=49+32=81
x₁=(-7-9)/8=-2; x₂=(-7+9)/8=1/4.
2)8x²-2x-1=8(x-(-1/4))(x-(1/2))=(4x+1)(2x-1)
D=(-2)²-4·8·(-1)=4+32=36
x₁=(2-6)/16=-1/4; x₂=(2+6)/16=1/2.
3)12x²-x-1=12(x-(-1/4))(x-(1/3))=(4x+1)(3x-1)
D=(-1)²-4·12·(-1)=1+48=49
x₁=(1-7)/24=-1/4; x₂=(1+7)/24=1/3.
4)x²+3x-40=(x-(-8))(x-5)=(x+8)(x-5)
D=(3)²-4·1·(-40)=4+160=169
x₁=(-3-13)/2=-8; x₂=(-3+13)/2=5.
5)x²+10x-11=(x-(-11))(x-1)=(x+11)(x-1)
D=(10)²-4·1·(-11)=100+44=144
x₁=(-10-12)/2=-11; x₂=(-10+12)/2=1.
6)x²-x-56=(x-(-7))(x-8)=(x+7)(x-8)
D=(-1)²-4·1·(-56)=1+224=225
x₁=(1-15)/2=-7; x₂=(1+15)/2=8.