1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое
Решение системы уравнений a=24,2
t=4,8
Объяснение:
Решить систему уравнений алгебраического сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -3:
a−4t=5
3a−7t=39
-3а+12t= -15
3a-7t=39
Складываем уравнения:
-3а+3а+12t-7t= -15+39
5t=24
t=24/5
t=4,8
Теперь подставляем значение t в любое из двух уравнений системы и вычисляем а:
a−4t=5
а=5+4t
a=5+4*4,8
a=24,2
Решение системы уравнений a=24,2
t=4,8
x²+x+2=t+4
t³=(t+4)²
t³=t²+8t+16
t³-t²-8t-16=0
t=4
t³-t²-8t-16 |_t-4_
t³-4t² | t²+3t+4
3t²-8t
3t²-12t
4t-16
4t-16
0
t²+3t+4=0 D=-7 ⇒
t=x²+x-2=4
x²+x-6=0 D=25
x₁=-3 x₂=2
x₁*x₂=(-3)*2=-6
ответ: x₁*x₂=-6.