Раскрываем скобки, если (-) и (-), то плюс будет; если(+) и (-), то минус будет; если(+) и (+), то плюс будет; перемножаем и считаем раздельно цифры и буквы,
х² - 3х + у²+ 3 > 0; поскольку число у, возведенное в квадрат больше (или равно при у=0) нуля, то есть число положительное при всех у, то рассмотрим неравенство: х² - 3х + 3 > 0; если оно будет верно, то и верно исходное неравенство х² - 3х + у²+ 3 > 0 x² − 3x + 3 > 0 Сначала решаем квадратное уравнение x² − 3x + 3 = 0. Вот коэффициенты данного квадратного уравнения: a = 1, b = − 3, c = 3. Его дискриминант D = b² − 4ac = (− 3) ² − 4 · 1 · 3 = − 3 Поскольку дискриминант D квадратного уравнения меньше 0, то уравнение не имеет действительных корней, и при любом x левая часть будет либо больше, либо меньше нуля; если a > 0, то при любом х всё выражение будет больше нуля; если a < 0, то при любом х всё выражение будет меньше нуля. В нашем уравнении a=1; > 0, поэтому выражение x² − 3x + 3 всегда будет больше нуля при любом x. Следовательно, наше неравенство x² − 3x + 3 > 0 верно при любом x.
а)6а-2(3а-9)= 6а-2•3а-2• (-9)= 6а-6а-(-18)= 0+18= 18.
г)7(х+2)-х+2= 7•Х+7•2-Х+2=7Х+14-Х+2= 6Х+16;
можно дальше = 2•(3х+8);
б)2х-5(х+5)-а= 2Х-5•Х-5•5-а= 2Х-5Х-25-а= -3Х-25-а;
можно = -(3х+25+а); если можно снова в скобку
д)4(а-b)+24-a= 4•а-4•b+ 24-a= 4a-4b+24-a= 3a-4b+24;
в)5(b-9)-6b+45= 5•b-5•9-6b+45= 5b-45-6b+45= -b;
е)b-1-2(b+3)-1= b-1-2•b-2•3-1= b-1-2b-6-1= -b-8;
тут можно ещё = -(b+8);