Сначала применим к выражению cos2x формулу косинуса двойного аргумента(1 её вариант). Затем получим уравнение, сводимое к алгебраическому. Получим:
2cos²x - 1 + 5cos x + 3 = 0
2cos²x + 5cos x + 2 = 0
Введём замену. Пусть cos x = t, причём |t| ≤ 1
Тогда получим обычкновенное квадратное уравнение:
2t² + 5t + 2 = 0
D = 25 - 16 = 9
t1 = (-5 - 3) / 4 = -8/4 = -2 - данный корень не удовлетворяет уравнению, поскольку мы наложили условие, что |t| ≤ 1
t2 = (-5+3) / 4 = -2/4 = -1/2 - подходит
cos x = -1/2
x = (-1)^k * arcsin(-1/2) + πk, k∈Z
x = (-1)^k+1 * π/6 + πk, k∈Z
ответ: (-1)^k+1 * π/6 + πk, k∈Z
Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
Теорема доказана.