Пусть 5ab исходное число, ab5 новое число. По условию задачи ab5> 5ab на 279, получим ab5-5ab=279 ab5 начинаем рассуждать: из 5 нужно вычесть число, чтобы - получилось 9. Этого сделать нельзя, поэтому занимаем 5ab десяток у b. Тогда 15-6=9, значит b =6. теперь b=6, и у b заняли десяток, значит из 5 вычитаем 279 число и получаем 7. Опять невозможно и занимаем у a десяток. Получаем , 15-8=7, значит a=8. В самом деле у a заняли десяток, осталось 7. 7-5=2 верно. Значит, исходное число 586
Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
в) 5а – (6а – (7а – (8а - 9))) = 5а-(6а - (7а-8а+9))=5а-(6а-7а+8а-9)=5а-6а+7а-8а+9=-2а+9