М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
YanDzhabbarov
YanDzhabbarov
20.04.2021 22:17 •  Алгебра

Почему так:
8: 2(2+2)=16
но:
4*2: 2(2+2)=16
пусть x=4
2x: 2x=1?

👇
Ответ:
zska25
zska25
20.04.2021

Чтобы получить единицу, надо изменить выражение.

8:(2*(2+2))=1.

А в условии 8:2*(2+2)=4*4=16.

4,8(15 оценок)
Ответ:
Кувшин13
Кувшин13
20.04.2021

Объяснение:

Можно я попробую обьяснить. В математике существуют жесткие правила вычисление. 1) сначало все действия производятся в скобках. 2. Затем рассчеты производят слева направо уможение или деление 3. После этого если есть сложение и вычитание. В данном примере как 2х:2х=1 нет скобок. Поэтому и решаем как 2х/2х. Были бы скобки решалось по-другому за внимание. Спрашивайте)

4,5(21 оценок)
Открыть все ответы
Ответ:
75545
75545
20.04.2021
Пусть неизвестное целое число равно х, 
тогда х-1 и х+1 - целые числа, расположенные слева и справа
 от числа х, соответственно.
По условию, сумма квадратов данных чисел равна 869.
Составим уравнение:
(х-1)²+х²+(х+1)²=869
х²-2х+1+х²+х²+2х+1=869
3х²+2=869
3х²=869-2
3х²=867
х²=867:3
х²=289
х=б \sqrt{289}
x=б17

1) x=17
    x-1=17-1=16
    x+1=17+1=18
    Получаем, 16, 17 и 18 - три последовательных целых числа
    Проверка: 16²+17²+18²=256+289+324=869
2) х=-17
    х-1=-17-1=-18
    х+1=-17+1=-16
    Получаем, -18, -17 и -16 - три последовательных целых числа
    Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869

ответ: 16, 17 и 18;  -18, -17 и -16
4,8(14 оценок)
Ответ:
Mished
Mished
20.04.2021
Иррациональное число - это число, не являющееся рациональным, то есть такое, которое нельзя представить в виде отношения двух целых чисел. 

Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1. 

Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел. 

Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью. 

Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж
4,4(47 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ