Найдём производную функции
Теперь найдём критические точки(y'=0):
Начертим прямую, нанесём точки на интервал. Там где производная положительная функци возрастает, отрицательная убывает. Там где функция сначало возрастала(убывала), а после в какой-то точке начало убывать(возрастать), то это точка экстрэмума.
Вложение.
Промежутки возрастания, убывания(промежутки монотонности):
(-бесконечности;0] - возрастает
(0;4/3] - убывает
(4/3;+бесконечности) - возрастает.
Экстэмумы функции: 0 - точка максимума.
4/3 - точка минимума.
Рисунок вложение.
Чтобы найти наибольшее и наименьшее значение на отрезке нужно найти значения на функции на концах отрезков, и на точках которые входят в этот промежуток. У нас это точки: -1;4;0;4/3
уравнение касательной:
Найдём y(x0):
Найдём производную.
Подставим в уравнение касательной.
1)] x (деталей/день) - изготовляла 1 бригада
х-8(деталей/день) - изготовляла 2 бригада.
y(дней) - время работы 1 бригады
y+1(дней) - время работы 2 бригады
Тогда:
y=240/x
y+1=240/(x-8)
240/x +1=240/(x-8)
240(x-8)+x(x-8)-240x=0
240x-1920+x^2-8x-240x=0
x^2-8x-1920=0
D=8^2+4*1920=64+7680=7744=88^2
x1=(8+88)/2=48
x2=(8-88)/2=-40 - не подходит
ответ: 48 и 40.
2)
Имеет смысл когда:
2(а+1,5)(а+4)>0 и -(a+5)(a-2)>0
a>-1,5 или a<-4 -5<a<2
-5<a<-4 и -1,5<a<2
ответ:
4х-5х=-10-12
-х=-22
х=22
б) -2х+10+3х-12=4х+1
-2х+3х-4х=1-10+12
-3х=3
х=3:(-3)
х=-1
в) 3х-3=2х+2
3х-2х=2+3
х=5
г)3х-15-2х-8=-5х+1
3х-2х+5х=1+15+8
6х=24
х=24:6
х=4