М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
АлинаRiver
АлинаRiver
05.06.2023 04:49 •  Алгебра

Найдите сумму подобных одночленов a)14x+6x=

👇
Ответ:
VafaMurad
VafaMurad
05.06.2023
14x+6x=(14+6)x=20x
4,6(65 оценок)
Открыть все ответы
Ответ:
grabon12312
grabon12312
05.06.2023
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  . Рисуем ось  и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось  на  N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
4,8(22 оценок)
Ответ:
7515575
7515575
05.06.2023
Первый корень подбираем как делитель свободного члена 81. Это могут быть числа \pm 1,\; \pm 3,\; \pm 9,\; \pm 81. 
При х=1 многочлен, стоящий в правой части равенства обращается в 0, поэтому х=1 - корень уравнения. Делим многочлен 4 степени на разность (х-1), должны получить многочлен 3 степени и в остатке 0.
 х^4-10x³+90x-81   |  x-1
-(x^4-x³)                 | ----------------
------------------            x³-9x²-9x+81
    -9x³+90x-81
  -(-9x³+9x²)
 ----------------------
           -9x²+90x-81
           -(9x²+9x)
           ------------------
                    81x-8x
                    81x-81
                   ------------
                            0
Можно записать разложение на множители многочлена 4 степени:
  x^4-10x³+90x-81=(x-1)(x³-9x²-9x+81)
Теперь или опять подберём корень или разложим на множители многочлен 3 степени:
  x³-9x²-9x+81= x²·(x-9)-9·(x-9)=(x-9)(x²-9)=(x-9)(x-3)(x+3)
Теперь запишем:
 x^4-10x³+90x-81=(x-1)(x-9)(x-3)(x+3)=0
x=1, x=9 , x=3 , x=-3.
4,5(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ