1) Разложить на множители:
3a+3a²-b-ab=(3a+3a²)+(-b-ab)=3a(1+a)+(-(b+ab))=3a(1+a)-(b+ab)=3a(1+a)-b(1+a)=(1+a)(3a-b)
2) Преобразуйте произведения (n²-n-1)(n²-n+1) в многочлен стандартного вида:
Для того чтобы данное выражение преобразовать в многочлен, необходимо перемножить обе скобки
(n²-n-1)(n²-n+1)=n⁴-n³+n²-n³+n²-n-n²+n-1
далее группируем (или приводим подобные члены)
n⁴+(-n³-n³)+(n²+n²-n²)+(-n+n)-1=n⁴-2n³+n²-1
3) Известно,что 2(a+1)(b+1)=(a+b)(a+b+2).Найдите a²+b²
За основу берём выражение
2(a+1)(b+1)=(a+b)(a+b+2)
поочерёдно раскрываем скобки
2(аb+a+b+1)=a²+ab+2a+ab+b²+2b
2ab+2a+2b+2=a²+ab+2a+ab+b²+2b
группируем правую половину уравнения
2ab+2a+2b+2=a²+(ab+ab)+2a+b²+2b
2ab+2a+2b+2=a²+2ab+2a+b²+2b
a²+b²=2ab+2a+2b+2-(2ab+2a+2b)
a²+b²=2ab+2a+2b+2-2ab-2a-2b
снова группируем
a²+b²=(2ab-2ab)+(2a-2a)+(2b-2b)+2
a²+b²=2
1). что-то не то с условием: из четырех чисел нельзя составить пятизначное число, не имеющие в составе повторяющихся цифр.
2). по признаку делимости на 5: чтобы число делилось на 5, надо, чтоб оно оканчивалось на 0 или 5. Т.к. данные цифры не используются, то числа, делящиеся на 5 составить нельзя.
по признаку делимости на 4: чтобы число делилось на 4, надо, чтоб число составленное из двух последних цифр в том же порядке делилось на 4. из данных цифр можно составить только числа оканчивающиеся на 24, 72, 32.
разберем вариант с 24. тогда с первой и второй цифрами числа так: т.к. цифры не повторяются 2 и 4 использовать нельзя. тогда на первое место в числе можно поставить любую из двух оставшихся цифр (таких 2), а на второе место уже оставшуюся цифру...в результате количество требующихся чисел 2*1=2.
аналогично получим 2 числа оканчивающиеся на 32 и 2 числа оканчивающиеся на 72.
ответ: а) 6 чисел. б) ни одного
3). т.к. учебники алгебры могут стоять только рядом, то возьмем их как один объект, тогда объектов, которые надо расставить у нас 4 (причем 3 из них одного вида - учебники геометрии (я так понимаю нет разницы какой из них будет стоять раньше, какой позже)). существует формула для перестановок с повторениями:
где n - общее кол-во объектов, а и т.д. - кол-во объектов каждого вида
получаем
4). Чисел которые начинаются с 2 - можно составить два. чисел, где 2 стоит на втором месте - тоже два, где на третьем - два. аналогично для 4 и 6.
теперь найдем сумму всех таких чисел: (2*100+2*10+2)*2+(4*100+4*10+4)*2+(6*100+6*10+6)*2
b записан не правильно
в) =x²+2xy+y²-2x²-6xy=y²-x²-4xy