Дано: 10 различных цифр: 1 2 3 4 5 6 7 8 9 0
Составить число кратное 11.
Признак делимости на 11: сумма цифр числа, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
Сумма всех 10-и цифр: 1+2+3+4+5+6+7+8+9+0=45, 45/2=22(ост.1), поэтому, поскольку в искомом числе должно быть равное количество четных и не четных мест, суммацифр на четных местах не может быть равна сумме цифр на нечетных.
Тогда нужно проверить 2-ю часть признака делимости:
45-11=34
34/2=17
45-17=28
28-17=11, значит сумма чисел, стоящтх на нечетных местах( 1; 3; 5; 7; 9) должна быть = 17, а на четных местах (2; 4; 6; 8; 10) = 28.
Теперь нужно разложить 17 и 28, каждое, на 5 слагаемых:
17=1+2+3+4+7
28=5+6+8+9+0
ответ: Данное разложение возможно, значит такое число существует.
Искомое число: 1526384970.
В задании сказано, составить число, поэтому найдено 1 число, на самом деле, таких чисел 5!+5!=2*5!=2(5*4*3*2*1)=240, потому, что при перестановке мест слагаемых сумма не меняется, поэтому сумма чисел, стоящих на нечетных местах, может быть в 120 вариантах 5*4*3*2*1=120, и сумма чисел, стоящих на четных местах может быть тоже в 120 вариантах (включая 0, потому, что 0 стоит на четном месте, поэтому никогда не встанет на 1 место, что могло бы изменить число с 10-и значного на 9-и значное)
Проверка с калькулятора:
1526384970/11=38762270
(x + 2)⁴ - 5(x + 2)² + 4 = 0
замена : (х+2)² = t
t² - 5t + 4 = 0
D = (-5)² - 4*1*4 = 25 - 16 = 9 = 3²
D> 0 - два корня уравнения
t₁= (- (-5) - 3)/(2*1) = (5-3)/2 = 2/2= 1
t₂= (-(-5) + 3)/(2*1) = (5+3)/2 = 8/2= 4
(x + 2)² = 1
x² + 2*x*2 + 2² = 1
x² + 4x + 4 - 1 =0
x² + 4x + 3 = 0
D = 4² -4*1*3 = 16 - 12 = 4 = 2²
D>0 - два корня уравнения
х₁ = (-4 - 2)/(2*1) = -6/2 = - 3
х₂ = (-4+2)/(2*1) = -2/2 = - 1
(х + 2)² = 4
х² + 4х + 4 - 4 =0
х² + 4х = 0
х(х + 4) = 0
произведение = 0, если один из множителей = 0
х₁ = 0
х + 4 =0
х₂ = -4
ответ : х₁= - 4 ; х₂ = - 3 ; х₃ = - 1 ; х₄ = 0.
Объяснение:
Дай лутший