В решении.
Объяснение:
Пароход проплыл 60 км по течению реки, а затем 20 км против течения и потратил на весь путь 7 часов. Какова собственная скорость парохода, если скорость течения реки 1 км/час?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость парохода.
(х + 1) - скорость парохода по течению.
(х - 1) - скорость парохода против течения.
60/(х + 1) - время парохода по течению.
20/(х - 1) - время парохода против течения.
Время в пути 7 часов, уравнение:
60/(х + 1) + 20/(х - 1) = 7
Умножить уравнение на (х + 1)(х - 1), чтобы избавиться от дробного выражения:
60 * (х - 1) + 20 * (х + 1) = 7 * (х + 1)(х - 1)
Раскрыть скобки:
60х - 60 + 20х + 20 = 7х² - 7
Привести подобные члены:
-7х² + 80х - 40 + 7 = 0
-7х² + 80х - 33 = 0/-1
7х² - 80х + 33 = 0, квадратное уравнение, ищем корни.
D=b²-4ac = 6400 - 924 = 5476 √D= 74
х₁=(-b-√D)/2a
х₁=(80-74)/14
х₁=6/14
х₁=3/7, отбрасываем, как не отвечающий условию задачи.
х₂=(-b+√D)/2a
х₂=(80+74)/14
х₂=154/14
х₂=11 (км/час) - собственная скорость катера.
Проверка:
60 : 12 = 5 (часов) - по течению.
20 : 10 = 2 (часа) - против течения.
5 + 2 = 7 (часов) - в пути, верно.
18 - (x - 5) * (x - 4) = -2;
18 - (x^2 - 4 * x - 5 * x + 20) = -2;
18 - (x^2 - 9 * x + 20) = -2;
Так как, перед скобками стоит знак минус, то значения знаков меняются на противоположный знак.
18 - x^2 + 9 * x - 20 = -2;
-x^2 + 9 * x - 2 = -2;
-x^2 + 9 * x - 2 + 2 = 0;
-x^2 + 9 * x = 0;
x^2 - 9 * x = 0;
Найдем дискриминант квадратного уравнения:
D = b2 - 4 * a * c = (-9)2 - 4 * 1 * 0 = 81 - 0 = 81;
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (9 - √81)/(2 * 1) = (9 - 9)/2 = 0/2 = 0;
x2 = (9 + √81)/(2 * 1) = (9 + 9)/2 = 18/2 = 9;
ответ: х = 0 и х = 9.
5⁴=625