М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
infernalcookie
infernalcookie
16.08.2021 12:02 •  Алгебра

Напишите решение примера за 8 класс: 5 корней из 2a=

👇
Ответ:
Корень из 2a = корень из (50a)
4,6(98 оценок)
Открыть все ответы
Ответ:
katyabicheva
katyabicheva
16.08.2021

y = x^{2} + 3x + 4

Найдем уравнение касательной, проходящей через точку с абсциссой x_{0} = -2

Для этого найдем производную данной функции:

y' = (x^{2} + 3x + 4)' = 2x + 3

Найдем значение функции в точке с абсциссой x_{0} = -2:

y(-2) = (-2)^{2} + 3 \cdot (-2) + 4 = 4 - 6 + 4 = 2

Найдем значение производной данной функции в точке с абсциссой x_{0} = -2:

y'(-2) = 2 \cdot (-2)+ 3 = -4 + 3 = -1

Уравнение касательной имеет вид:

y = f'(x_{0})(x - x_{0}) + f(x_{0})

Подставим значение f'(x_{0}) = -1, \ f(x_{0}) = 2, \ x_{0} = -2

y = -(x + 2) + 2 = -x - 2 + 2 = -x

Итак, уравнение касательной заданной функции: y = -x

Воспользуемся геометрическим смыслом касательной: коэффициент наклона k касательной y = kx + b численно равен тангенсу угла наклона \text{tg} \ \alpha  с положительным направлением оси Ox

В найденной касательной коэффициент k = -1, следовательно, \text{tg} \ \alpha = -1 при \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

ответ: \alpha = 135^{\circ} или \alpha = \dfrac{3\pi }{4}

4,8(85 оценок)
Ответ:
valdi5p0ch22
valdi5p0ch22
16.08.2021

Объяснение:

x²-3x<0

x(x-3)<0

Допустим:

x₁=0; x-3=0; x₂=3

Проверка при x₁>0 и x₂>3: 4²-3·4<0; 16-12<0; 4>0 - неравенство не соблюдается.

Проверка при x₁<0 и x₂<3: (-1)²-3·(-1)<0; 1+3<0; 4>0 - неравенство не соблюдается.

Проверка при x₁>0 и x₂<3: 1²-3·1<0; 1-3<0; -2<0 - неравенство соблюдается.

Следовательно, 0<x<3⇒x∈(0; 3).

              /\

0/\3x

x²-7x-30≥0

Допустим:

x²-7x-30=0; D=49+120=169

x₁=(7-13)/2=-6/2=-3

x₂=(7+13)/2=20/2=10

Проверка при x₂>10: 11²-7·11-30≥0; 121-77-30≥0; 14>0 - неравенство соблюдается; при x₁>-3: 0²-7·0-30≥0; -30<0 - неравенство не соблюдается.

Проверка при x₁<-3: (-4)²-7·(-4)-30≥0; 16+28-30≥0; 14>0 - неравенство соблюдается.

Следовательно, -3>x>10⇒x∈(-∞; -3]∪[10; +∞).

\                               /

\-310/x

4,7(15 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ