№1.
Если трехчлен (2х²- 7х+а) содержит множитель ( х - 4), значит один из корней уравнения 2х²- 7х+а= 0 равен 4, т.е. х=4
Подставим х=4 в уравнение 2х²- 7х+а=0 и найдем а.
2·4²- 7·4+а =0
а=28-32
а= - 4
№2.
4х²+ ах + 6 содержит множитель ( 2х + 1)
1)2х+1=0
х= - 0,5 - это первый корень уравнения 4х²+ах+6=0
2) Делим обе части уравнения 4х²+ах+6=0 на 4 и получим приведенное квадратное уравнение:
х²+0,25ах+1,5=0
3) По теореме Виета для приведенного квадратного уравнения найдем второй корень,
х₁ * х₂ = 1,5
х₂=1,5 : (-0,5)
х₂= - 3
4) По теореме Виета для приведенного квадратного уравнения найдем второй коэффициент, стоящий при х.
х₁+х₂= -0,25а
- 0,25а = - 0,5 + (-3)
- 0,25а = - 3,5
а = - 3,5 : (-0,25)
а = 14
В решении.
Объяснение:
1) Ложь. Знак минус перед х² показывает - ветви вниз.
2) Истина. Уравнение имеет 2 корня, значит, парабола имеет две точки пересечения с осью Ох.
3) Ложь. Нет минуса перед х².
4) Истина. Знак минус перед х² показывает - ветви вниз.
5) Ложь. Уравнение имеет 2 корня, значит, парабола имеет две точки пересечения с осью Ох.
6) Истина. Уравнение не имеет решения, значит, нет точек пересечения параболы с осью Ох.
7) Истина. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
8) Ложь. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
Координаты вершины параболы (2; 0).
9) Истина. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
10) Ложь. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
Координаты вершины параболы (-3; 0).
2х-2=6х-3
2х-6х=-3+2
-4х=-1
х=0.25
2. 3(1-х)=4х-11
3-3х=4х-11
-7х=-14
х=2
3. 3-5(х-1)=х-2
3-5х+5=х-2
-х=-5
х=5
4. 3(х-2)-2(х-1)=17
3х-6-2х+2=17
3х-2х=17+6-2
х=21