Примем за базу индукции n=5. Проверим истинность выражения при n=5: . Получили верное неравенство => базис доказан.
Теперь предположим, что неравенство справедливо при некотором n=k>=5, т.е. выполняется: . Доказав истинность выражения при n=k+1, в соответствии с принципом математической индукции, мы докажем и истинность выражения при n>=5. Используем наше предположение: => => .
Проверим истинность последнего неравенства: .
Т.е. последнее неравенство верно для всех k>0.8, но, по нашему предположению, k>=5, а значит, выражение истинно при всех n=k+1, что и требовалось доказать.
Cos(2 pi - a) = cos ( - a) = cos a;
ctg (pi+a)=ctg a,
получается такое выражение
cos(2pi - a) + tg(pi./2 +a) + ctg (pi+a) = cos( - a) + (- ctg a) + ctg a = cos a.