Данное двойное неравенство равносильно системе двух квадратных неравенств:
Первое неравенство .
Заметим, что в левой части скрывается квадрат разности (формула ):
.
Неравенство принимает следующий вид: .
Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: и
.
Значит, первой неравенство эквивалентно тому, что .
Второе неравенство .
Вс уравнение имеет по теореме Виета (утверждающей, что
и
) корни
и
.
Из этого следует разложение левой части на множители: .
Метод интервалов подсказывает решение .
+ + + - - - + + +
__________________
_________
\\\\\\\\\\\\\\\\\\\\\
Значит, второе неравенство равносильно тому, что .
Имеем значительно более простую систему неравенств:
Вполне понятно, что ее решением является (как пересечения двух промежутков).
Или же .
Задача решена!
ответ:Это функция представляет из себя ломанную, нам надо найти нули этой функции. На числовой прямой отметим точки в которых аргументы модулей равны нулю. Таким образом мы сможем узнать как на промежутках раскрываются модули и выглядит функция, сверху напишу модули, чтобы было понятно, хотя можно сразу писать конечную функцию для промежутка. см. вниз.
Да и ||2x-1|-5| я представил как |2x-6| и |-2x-4|, при этом первый существует когда x>0.5, а другой когда x<0.5 т.к. 2x-1=0 =>x=0.5
Ординаты точек в которых происходит смена знака у модуля.
Можно построить график ломанной, а можно сразу по условию определить где функция будет равна 0.
Главное помнить, что функция существует на каком-то промежутку, а не при всех х.
ответ: x∈[0.5;3].
Поскольку каждый следующий элемент однозначно определяется предыдущим, то как только в последовательности встретится число, которое уже было раньше, последоватеьлность с этого места начнет повторяться. Такой момент наступает на 16-ом элементе: число 89 уже было на 8-м месте. Итак, до начала периодичности записано 7 элементов: 2016, 41, 17, 50, 25, 29, 85, а после этого последовательность из 8 элементов 89, 145, 42, 20, 4, 16, 37, 58 циклически повторяется. Т.к. 2016-7=2009=8*251+1, то после семи первых элементов в 2009 элементов укладывается 251 полный период длиной 8, и поскольку остаток равен 1, то 2016-ый элемент равен первому элементу в периоде, т.е. 89. ответ: 89.