Подставим координаты точки М в уравнение функции: 5 = к(-2)² + 9, к*4 = 5 - 9 = -4. к = -4/4 = -1. Уравнение функции: у = -х² + 9. График функции и её свойства даны в приложении.
Можно и по-другому. х² принимает минимальное значение в точке 0, и равно это значение 0² = 0
К нулю прибавим 5 и получим 5. |5| = 5, что явно больше, чем 2.
При иных значениях х значение х² будет больше 0, значит х² + 5 будет больше 5, модуль этого значения будет равен самому значению (отрицательное значение под модулем в данном случае невозможно), а значит всё это подавно больше, чем 2. И тут опять ответ: х ∈ ℝ
1) запишем данное выражение в десятичных дробях: (6,5-4,25):2,5=2,25:2,5=0,9. 2) В уравнении смешанные дроби превратим в неправильные: 45/7:13/7=9/2:y ⇒ y=13×(9/2):45=13/10. 3)Обозначим через х количество десятков в двузначном числе, а через у - число единицю Тогда, учитывая условие задачи получим систему двух уравнений с двумя неизвестными: х+у=13 х-3=у Решая эту систему, получим: х=8, у=5, следовательно, искомое число 85. 4) Так как 21 км составляет 15% пути, весь путь найдем следующим образом: 21×100/15=140 (км). Теперь легко найти путь, пройденный во второй день: 140:7×2=40 (км)
5 = к(-2)² + 9,
к*4 = 5 - 9 = -4.
к = -4/4 = -1.
Уравнение функции: у = -х² + 9.
График функции и её свойства даны в приложении.