Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
Предлагаю 1)используя формулы комбинаторики. В данном случае формула размещений: всего нечетных цифр - 5, их надо разместить по 3 цифры: n=5; k=3 ответ: 60 2) логический пусть трехзначное число будет a.b.c среди цифр от 0 до 9: 1,3,5,7,9 - нечетные 0,2,4,6,8 - четные значит на место одной из цифр a, b или c можно будет поставить 5 нечетных цифр. Но так как цифры не должны повторяться, для каждой следующей цифры, количество вариантов будет уменьшатся на 1. Это значит: для c - 5 вариантов, значит для b - будет 5-1=4 варианта, для a будет соответственно 4-1=3 варианта в числе a.b.c - цифра a будет принимать значения: 1,3,5,7,9 цифра b при каждом значении a: 1,3,5,7,9 исключая цифру а, аналогично и с c, исключая цифру из a и b, всего таких чисел будет 5*4*3=60 ответ: 60