М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nasty286
nasty286
19.07.2022 00:40 •  Алгебра

Решить выражение (3с – 2)^2 + 24c

👇
Ответ:
zavet3427
zavet3427
19.07.2022
(3c-2)^2+24c
3c^2-2^2+24c
6c-4+24c
6c+24c-4
30c-4
4,6(80 оценок)
Открыть все ответы
Ответ:
232привет
232привет
19.07.2022

Диаграмма Венна (также используется название диаграмма Эйлера — Венна) — схематичное изображение всех возможных отношений (объединение, пересечение, разность, симметрическая разность) нескольких (часто — трёх) подмножеств универсального множества. На диаграммах Венна универсальное множество {\displaystyle U}U изображается множеством точек некоторого прямоугольника, в котором располагаются в виде кругов или других простых фигур все остальные рассматриваемые множества[1][2].

Диаграммы Венна применяются при решении задач вывода логических следствий из посылок, выразимых на языке формул классического исчисления высказываний и классического исчисления одноместных предикатов[3], для :

описания функционирования формальных нейронов Мак-Каллока и сетей из них[4]

синтеза надежных сетей из не вполне надежных элементов[5],

построения управляющих и самоуправляющихся систем и блочного анализа и синтеза сложных устройств[6],

получения логических следствий из заданной информации, минимизации формул исчислений[7][8].

Диаграммы Венна при {\displaystyle n}n фигур изображают все {\displaystyle 2^{n}}2^{n} комбинаций {\displaystyle n}n свойств, то есть конечную булеву алгебру[9]. При {\displaystyle n=3}n=3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

Дальнейшим развитием аппарата диаграмм Венна в классическом исчислении высказываний является аппарат вероятностных диаграмм [10], понятие сети диаграмм, использующей диаграммы Венна как операторы[11].

Они появились в сочинениях английского логика Джона Венна (1834—1923), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году.

Объяснение:

4,8(44 оценок)
Ответ:
diman211102
diman211102
19.07.2022
Это все простые числа:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
Это 15 чисел, но каждое равно просто самому себе, потому что они простые и делятся только на 1 и на себя. 1 - это не простое число.
Все составные числа больше, чем сумма их простых делителей.
Например, делители 10 и 20: 2 и 5, 2+5 = 7. 34: 2 и 17, 2+17 = 19.
Если считать 1 простым числом, тогда число только одно:
6 = 1+2+3 - это так называемое совершенное число.
До 50 есть еще одно совершенное число 28 = 1+2+4+7+14,
но у него не все делители - простые.
ответ: если 1 - не простое число, то 15 чисел.
Если 1 - простое число, то одно число 6.
4,6(14 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ