Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
Найдем вероятность появления 2 учебников в переплете среди взятых:
- благоприятные исходы: произведение числа выбрать 2 учебника с переплетом из 4 и числа выбрать 2 учебника без переплета из 2:
- все возможные исходы: число выбрать 2 учебника из 6
Каждый выбор считаем сочетанием, так как порядок выбор не важен. Вероятность рассчитываем как отношение числа благоприятных исходов к общему числу всех возможных исходов:
Вероятность появления 3 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 3 учебника с переплетом из 4 и числа выбрать 1 учебник без переплета из 2: - все возможные исходы: число выбрать 3 учебника из 6
Вероятность появления 4 учебников в переплете среди взятых: - благоприятные исходы: произведение числа выбрать 4 учебника с переплетом из 4 и числа выбрать 0 учебников без переплета из 2: - все возможные исходы: число выбрать 4 учебника из 6
Очевидно, что выбрать 5 и более учебников с переплетом невозможно.
Закон распределения имеет вид: