1(б) x^2 -6x-7=0
D1=(-3)^2-1*(-7)=16 => корень из D1=4
x1=3+4=7 x2=3-4=-1
x^2-9x+14=0
D=(-9)^2-4*1*14=25 => корень из D=5
x1=9+5/2=7 x2=9-5/2=2
Записываем дробь с полученными корнями.
(x-7)(x+1)/(x-7)(x-2)=x+1/x-2
2(б) 3x^2-16x+5=0
D1=(-8)^2-3*5=49 => корень из D1=7
x1=8+7/3=5 x2=8-7/3=1/3
Нижнюю часть сократим на x, но будем помнить, что за этим x скрывается ещё один корень - 0.
x^2-4x-5=0
D1=(-2)^2-1*(-5)=9 => корень из D1=3
x1=2+3=5 x2=2-3=-1 x3=0
Подставляем.
(x-5)(x-1/3)/(x-5)(x+1)x=x-1/3/x(x+1)
В двудольном графе, который содержит n вершин в одной доле и m вершин в другой, наибольшее количество рёбер будет тогда, когда каждая вершина из одной доли будет соединена с каждой вершиной в другой доле.
В этом случае количество ребёр будет равно n*m
В нашей задаче известно, что граф содержит 100 вершин.
Пусть количество вершин в одной доле равно n. Тогда в другой доле будет 100 - n вершин.
Количество ребёр тогда равно n(100 - n)
n(100 - n) = -n² + 100n
График полученного выражения - парабола, ветви которой направлены вниз (т.к. коэффициент при n² меньше 0)
Следовательно наибольшее значения будет в вершине данной параболы
Тогда количество рёбер равно 50(100 - 50) = 2500
y=5x 2.5=5x x=0.5; -2.5=5x x=-0.5
y=2,5
y= -2,5.
Табл. и графики во вложении