Задание 1. Запись говорит о том, что А является подмножеством В. Так как , то . То есть А является также подмножеством С. Так как , то . То есть D является подмножеством С. Получилось, что A,B,D подмножества относятся к множеству С. Теперь посмотрим на числа в подмножестве {1,2,3,4} они целые(Z), подмножеством целых являются натуральные(N), подмножеством натуральных являются четные натуральные и нечётные натуральные. Таким образом ответ: 1. Пример: C {1,2,3,4}, целые C ∈ Z B {1,2,3} D {2,3}, D⊂B А {1,3} A⊂B 2. Пример: C {1,2,3,4}, целые C ∈ Z B {1,2,4} D {1,4}, D⊂B А {2,4} A⊂B 3. Пример: C {1,2,3,4} B {2,3,4} D {2,3}, D⊂B А {2,4} A⊂B 4. Пример: C {1,2,3,4} B {1,3,4} D {1,3}, D⊂B А {3,4} A⊂B
Задание 2. A={1;3;6;9;12} B={0;2;4;6;8;10;12} A∩B - объединение множеств, это добавление чисел из одного множества в другое. A∩В = {0,1,2,3,4,6,8,9,10,12} A∪B - пересечение множеств, это выборка из общих чисел этих множеств. A∪B = {6,12}
Для начала вычисляем путь на "взаимное" сближение: Первый делал остановку на 56 минут, что является 14\15 часа, значит расстояние, пройденное вторым будет равно 14\15 ч * 30 км\ч = 28 км. Значит путь на сближение велосипедистов составлял: 93 км - 28км = 65 км. Время, через которое они встретились (если исключить остановку первого) = 65 км\ (20 + 30) км\ч = 1,3 ч. Теперь мы находим расстояние который проехал на взаимное сближение второй: 1,3 ч * 30 км\ч = 39 км. Также он проехал те 28 км, когда первый останавливался, значит общий путь второго равен: 39 км + 28 км = 67 км.
lgx>1/2
x>√10
x∈(√10;∞)
2.Log_3(7-4x)>-2
{7-4x>0⇒4x<7⇒x<1,75
{7-4x>1/9⇒4x<7-1/9⇒4x<62/9⇒x<62/36⇒x<1 13/18
x∈(-∞'1 13/18)