ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Пусть в растворе было x граммов соли. Тогда всего было 60 + x г раствора, в котором процентность содержания соли вычисляется через пропорцию. 60 + x - это 100% x - это y %. y = x * 100/(60 + x) После добавления воды стало 80 + x граммов раствора, а концентрация соли стала y - 5% 80 + x - это 100% x - это y - 5%. y - 5 = x * 100/(80 + x) Решим систему уравнений. x * 100/(60 + x) - 5 = x * 100/(80 + x) Сократим уравнение на 5, избавимся от дробей и приведём квадратное уравнение к стандартному виду. 100x(80 + x) - 5(60 + x)(80 + x) = 100x(60 + x) 20x(80 + x) - 4800 - 60x - 80x - x^2 = 20x(60 + x) 1600x + 20x^2 - 4800 - 140x - x^2 = 1200x + 20x^2 1600x - 4800 - 140x - x^2 - 1200x = 0 x^2 - 260x + 4800 = 0 D = 260 * 260 - 4 * 4800 = 67600 - 19200 = 48400 = 220^2 x = (260 - 220)/2 = 40 : 2 = 20 г.
ответ: раствор содержит 20 граммов соли.
пусть Х это малый угол пар-ма, их два
тогда 5Х это больший угол пар-ма их тоже два
2Х+10Х=360 отсюда 12Х= 360 Х= 30 -малый угол пар-ма
5Х=5·30=150 больший угол пар-ма
Углы пар-ма 30; 30; 150; 150
Их сумма равна 360 ответ: 30; 30; 150; 150