a = -1/3; b = 10/3
Объяснение:
Надо просто перемножить эти числа.
Это делается также, как перемножение многочленов.
Только надо помнить. что i*i = -1.
z1*z2 = (2 + i)(0,2 + 0,4i) = 2*0,2 + 0,2i + 2*0,4i + 0,4i*i =
= 0,4 + 0,2i + 0,8i - 0,4 = 0 + 1i = i
Теперь решаем уравнение:
a*z1 + b*z2 = i
a(2 + i) + b(0,2 + 0,4i) = i
2a + ai + 0,2b + 0,4bi = i
(2a + 0,2b) + (a + 0,4b)*i = i = 0 + 1*i
Составляем систему по коэффициентам:
{ 2a + 0,2b = 0
{ a + 0,4b = 1
Умножаем 1 уравнение на 5, а 2 уравнение на -10:
{ 10a + b = 0
{ -10a - 4b = -10
Складываем уравнения:
0a - 3b = -10
b = -10/(-3) = 10/3
a = -b/10 = -10/3 : 10 = -1/3
3.
√x +√y=5 ;
x-y =10
Область определения x≥ 0 ; y≥ 0
x-y = (√x -√y)( √x +√y)=10 ,
тогда система
√x +√y=5 ;
(√x -√y)( √x +√y)=10
подставим √x +√y=5
√x +√y=5 ;
√x -√y =2
Решим сложения
2√x = 7 ; √x = 7/2 ; x = 49/4= 12,25
x-y =10 ; y=x-10= 12,25-10= 2,25
ответ (12,25 ; 2,25)
4.
√x -√y=4 ;
x-y =24
Область определения x≥ 0 ; y≥ 0
x-y = (√x -√y)( √x +√y)=24 ,
тогда система
√x -√y=4 ;
(√x -√y)( √x +√y)=24
подставим √x -√y=4
√x -√y=4 ;
√x +√y =6
Решим сложения
2√x = 10 ; √x = 5 ; x =25
x-y =24 ; y=x-24= 25-24= 1
ответ (25 ; 1)
5.
x+y=2 ;
√(x+2) +√(3-y)=3
Область определения
x+2 ≥ 0 ; x ≥ -2
3-y≥ 0 ; 3 ≥ y
x-y = (√x -√y)( √x +√y)=24 ,
преобразуем
x+y=2 ; (x+2)-(3-y) = 1 ; (√(x+2) -√(3-y))* (√(x+2) +√(3-y)) =1
но √(x+2) +√(3-y)=3
тогда система
√(x+2) -√(3-y)=1/3
√(x+2) +√(3-y)=3
Решим сложения
2√(x+2) =1/3+3=10/3 ; √(x+2) =5/3 ; x+2 =25/9 ; x=7/9
x+y=2 ; y=2-x =2-7/9=11/9
ответ (7/9 ; 11/9)