Обе группы представляют собой, суммы членов арифметических прогрессий, однако, надо внимательней выписывать первый член этих прогрессий, чтобы n было количеством членов этих прогрессий. Итак, разбираемся с первой группой, заметим, что при n=1, 3(n-1)=0, следовательно первый член этой арифметической прогрессии- 0! а не 3! последний- 3(n-1), значит сумма n членов этой прогрессии, заключенных в первой группе, S(n1)=(0+3(n-1))*n/2=(3n^2-3n)/2=1,5n^2-1,5n Переходим ко второй группе, заметим, что при n=1, (8+3n)/2=5,5 значит именно 5,5 а не 4, будет являтся первым членом этой прогрессии, найдем сумму: S(n2)=(5,5+(8+3n)/2)*n/2=(9,5n+1,5n^2)/2 Таким образом наше уравнение запишется в следующем виде: 1,5n^2-1,5n+4+(9,5n+1,5n^2)/2=137 1,5n^2-1,5n+(9,5n+1,5n^2)/2=133 6n^2-6n+19n+3n^2=532 9n^2+13n-532=0 n=7
Будем считать, что они отвечают на тест с двумя вариантами ответа. (Иначе возникнет вопрос - сколько есть правильных и неправильных ответов, от этого будет зависеть ответ). Также считаем, что отвечают ученики независимо от учителя.
Пусть мальчиков M и девочек D. Тогда вероятность правильного ответа у случайно выбранного ученика равна p = M / (M + D) * beta + D / (M + D) * gamma.
Теперь будем решать такую задачу: учитель отвечает верно с вероятностью alpha, ученик отвечает верно с вероятностью p. Найти вероятность того, что они ответят одинаково. При каком p эта вероятность = 1/2?
Конечно, P(одинаково) = P(уч-к ошибся|уч-ль ошибся) + P(уч-к верно|уч-ль верно) = alpha p + (1 - alpha)(1 - p) = alpha p + 1 - alpha - p + alpha p = p(2alpha - 1) + (1 - alpha) = 1/2 p(2alpha - 1) = alpha - 1/2 p = 1/2 (*) или alpha = 1/2 (**)
(*) M / (M + D) * beta + D / (M + D) * gamma = 1/2 M beta + D gamma = 1/2 (M + D) M/D beta + gamma = 1/2 M/D + 1/2 M/D (beta - 1/2) = 1/2 - gamma Если beta не равна 1/2, ответ M/D = (1 - 2gamma)/(2beta - 1) Если beta = gamma = 1/2, то M/D - любое. Если beta = 1/2 и gamma != 12, то M/D = infty, т.е. D = 0 и M != 0.
(**) Если alpha = 1/2, то p может принимать любые значения, тогда ничего узнать не удастся.
ответ. Если alpha = 1/2 или beta = gamma = 1/2, то отношение может быть любым, иначе оно равно (1 - 2gamma))/(2beta - 1)