Объяснение:
Войти
АнонимМатематика11 июля 20:08
Найдите промежутки возрастания и убывания, наименьшее значение функции у = x2- 4х - 5
ответ или решение1
Лебедев Яков
Имеем функцию y = x^2 - 4 * x - 5.
Найдем промежутки возрастания, убывания и наименьшее значение функции.
Для начала находим производную функции:
y' = 2 * x - 4.
Промежуток возрастания- промежуток функции, где каждому большему значению аргумента соответствует большее значение функции. На промежутке возрастания производная функции больше нуля.
2 * x - 4 > 0;
x > 2 - промежуток возрастания функции.
Соответственно, для промежутка убывания получаем:
2 * x - 4 < 0;
x < 2 - промежуток убывания функции.
x = 2 - ноль функции. Найдем значение функции от данного аргумента:
y = 4 - 8 - 5 = -9 - наименьшее значение функции.
0<у<24, 12<х<24, где х=АВ=ВС, у=АС
Объяснение:
Поскольку треугольник равнобедренный, то две стороны у него равны АВ=ВС. Пусть длина стороны АВ=х, длина стороны АС=у. Тогда периметр треугольника Р=х+х+у или 2х+у=48. Учитывая условие существования треугольника (сумма длин двух любых сторон больше длины третьей стороны), мы также получаем два неравенства 2х>у и х+у>х. Отсюда мы получаем множество решений, где длина основания треугольника может быть больше 0, но меньше 24, а длина бедра от 12 до 24 (не включая граничные значения)
Но я думаю, что какое-то условие Вы нам не дописали. :)
(-3;2]